A Taxation attribute reduction based on genetic algorithm and rough set theory

Xu Linzhang, Han Zhen, Zhang Yanning
{"title":"A Taxation attribute reduction based on genetic algorithm and rough set theory","authors":"Xu Linzhang, Han Zhen, Zhang Yanning","doi":"10.1109/ICOSP.2008.4697749","DOIUrl":null,"url":null,"abstract":"Selection of taxation attributes is one difficult question in analyzing the sources of taxation. This paper introduces genetic-algorithm-based rough set attribute reduction algorithm into the job of taxation attribute reduction. By referring to the concept of dependability in rough set, this method optimizes the configuration of fitness function, improves the convergence of original algorithm and changes the limitation of current attribute reduction in genetic algorithm. This algorithm fundamentally realizes the selection of comparatively small attribute sets with the presupposition that the data classification ability is not changed. It is valid after being tested.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Selection of taxation attributes is one difficult question in analyzing the sources of taxation. This paper introduces genetic-algorithm-based rough set attribute reduction algorithm into the job of taxation attribute reduction. By referring to the concept of dependability in rough set, this method optimizes the configuration of fitness function, improves the convergence of original algorithm and changes the limitation of current attribute reduction in genetic algorithm. This algorithm fundamentally realizes the selection of comparatively small attribute sets with the presupposition that the data classification ability is not changed. It is valid after being tested.
基于遗传算法和粗糙集理论的税收属性约简
税收属性选择是税源分析中的一个难点问题。本文将基于遗传算法的粗糙集属性约简算法引入到税收属性约简中。该方法借鉴粗糙集中可靠性的概念,优化了适应度函数的配置,提高了原算法的收敛性,改变了当前遗传算法属性约简的局限性。该算法在不改变数据分类能力的前提下,从根本上实现了较小属性集的选择。经过测试是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信