Incorporating connected region labelling into automated image registration using mutual information

Colin Studholme, Derek L. G. Hill, David J. Hawkes
{"title":"Incorporating connected region labelling into automated image registration using mutual information","authors":"Colin Studholme, Derek L. G. Hill, David J. Hawkes","doi":"10.1109/MMBIA.1996.534054","DOIUrl":null,"url":null,"abstract":"The information theoretic measure of mutual information has been successfully applied to multi-modality medical image registration for several applications. There remain however; modality combinations for which mutual information derived from the occurrence of image intensities alone does not provide a distinct optimum at true registration. The authors propose an extension of the technique through the use of an additional information channel supplying region labelling information. These labels which can specify simple regional connectivity or express higher level anatomical knowledge, can be derived from the images being registered. The authors show how the mutual information measure can be extended to include an additional channel of region labelling, and demonstrate the effectiveness of this technique for the registration of MR and PET images of the pelvis.","PeriodicalId":436387,"journal":{"name":"Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMBIA.1996.534054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

The information theoretic measure of mutual information has been successfully applied to multi-modality medical image registration for several applications. There remain however; modality combinations for which mutual information derived from the occurrence of image intensities alone does not provide a distinct optimum at true registration. The authors propose an extension of the technique through the use of an additional information channel supplying region labelling information. These labels which can specify simple regional connectivity or express higher level anatomical knowledge, can be derived from the images being registered. The authors show how the mutual information measure can be extended to include an additional channel of region labelling, and demonstrate the effectiveness of this technique for the registration of MR and PET images of the pelvis.
利用互信息将连通区域标记纳入自动图像配准
互信息的信息论测度已成功地应用于多模态医学图像配准中。然而,仍然有;模态组合的相互信息,从图像强度的出现单独不能提供一个明显的最优在真正的配准。作者建议通过使用提供区域标记信息的附加信息通道来扩展该技术。这些标签可以指定简单的区域连通性或表达更高层次的解剖学知识,可以从被配准的图像中得到。作者展示了互信息测量如何扩展到包括额外的区域标记通道,并展示了该技术在骨盆MR和PET图像注册中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信