Analysis of Gait Flow Image and Gait Gaussian Image Using Extension Neural Network for Gait Recognition

Parul Arora, S. Srivastava, Shivank Singhal
{"title":"Analysis of Gait Flow Image and Gait Gaussian Image Using Extension Neural Network for Gait Recognition","authors":"Parul Arora, S. Srivastava, Shivank Singhal","doi":"10.4018/IJRSDA.2016040104","DOIUrl":null,"url":null,"abstract":"This paper proposes a new technique to recognize human gait by combining model free feature extraction approaches and a classifier. Gait flow image (GFI) and gait Gaussian image (GGI) are the two feature extraction techniques used in combination with ENN. GFI is a gait period based technique, uses optical flow features. So it directly focuses on dynamic part of human gait. GGI is another gait period based technique, computed by applying Gaussian membership function on human silhouettes. Next, ENN has been used as a classifier which combines the extension theory and neural networks. All the study has been done on CASIA-A and OU-ISIR treadmill B databases. The results derived using ENN are compared with SVM (support vector machines) and NN (Nearest neighbor) classifiers. ENN proved to give good accuracy and less iteration as compared to other traditional methods.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2016040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes a new technique to recognize human gait by combining model free feature extraction approaches and a classifier. Gait flow image (GFI) and gait Gaussian image (GGI) are the two feature extraction techniques used in combination with ENN. GFI is a gait period based technique, uses optical flow features. So it directly focuses on dynamic part of human gait. GGI is another gait period based technique, computed by applying Gaussian membership function on human silhouettes. Next, ENN has been used as a classifier which combines the extension theory and neural networks. All the study has been done on CASIA-A and OU-ISIR treadmill B databases. The results derived using ENN are compared with SVM (support vector machines) and NN (Nearest neighbor) classifiers. ENN proved to give good accuracy and less iteration as compared to other traditional methods.
应用扩展神经网络分析步态流图像和步态高斯图像的步态识别
本文提出了一种将无模型特征提取方法与分类器相结合的人体步态识别新技术。步态流图像(GFI)和步态高斯图像(GGI)是与新神经网络相结合的两种特征提取技术。GFI是一种基于步态周期的技术,利用光流特征。因此,它直接关注人体步态的动态部分。GGI是另一种基于步态周期的技术,通过对人体轮廓应用高斯隶属函数来计算。其次,将可拓理论与神经网络相结合,采用新神经网络作为分类器。所有研究均在CASIA-A和OU-ISIR跑步机B数据库上完成。使用ENN得到的结果与SVM(支持向量机)和NN(最近邻)分类器进行了比较。事实证明,与其他传统方法相比,新网络具有良好的精度和较少的迭代次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信