Federated Learning Algorithms: Towards Next Generation Communication Systems

Konstantinos D. Stergiou, Konstantinos E. Psannis
{"title":"Federated Learning Algorithms: Towards Next Generation Communication Systems","authors":"Konstantinos D. Stergiou, Konstantinos E. Psannis","doi":"10.1109/WSCE51339.2020.9275577","DOIUrl":null,"url":null,"abstract":"We provide a survey of four different categories of Federated Learning algorithms and their limitations as these were unveiled through experiments using commonly accepted data sets. The level of data heterogeneity forms a potential benchmark to compare Federated Averaging, Gradient Descent, Evolutionary, and Differential Privacy methods and, among other criteria, identifies the gaps that need to be addressed from future approaches.","PeriodicalId":183074,"journal":{"name":"2020 3rd World Symposium on Communication Engineering (WSCE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd World Symposium on Communication Engineering (WSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCE51339.2020.9275577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a survey of four different categories of Federated Learning algorithms and their limitations as these were unveiled through experiments using commonly accepted data sets. The level of data heterogeneity forms a potential benchmark to compare Federated Averaging, Gradient Descent, Evolutionary, and Differential Privacy methods and, among other criteria, identifies the gaps that need to be addressed from future approaches.
联邦学习算法:迈向下一代通信系统
我们提供了四种不同类别的联邦学习算法的调查,以及它们的局限性,因为这些都是通过使用普遍接受的数据集的实验揭示的。数据异质性的水平形成了一个潜在的基准,用于比较联邦平均、梯度下降、进化和差分隐私方法,并在其他标准中确定需要从未来的方法中解决的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信