{"title":"MapReduce optimisation information query method for file management system","authors":"Xuguang Zhu, Yuzhi Shen","doi":"10.1504/IJRIS.2018.10013291","DOIUrl":null,"url":null,"abstract":"MJQO problem is very complicated, query speed influences execution efficiency of database application software. To solve deficiencies such as low rate of convergence, etc., of PSO algorithm and improve optimisation efficiency of database multi-connection query, this thesis proposes a MJQO method adapting to escape momentum particle swarm optimisation aiming at deficiencies of particle swarm optimisation such as early-maturing, partial optimisation, etc., and it verifies effectiveness of SAEV-MPSO via emulation contrasted test, and this algorithm can obtain optimal query scheme of MJQO in relatively short-time. Crossover mechanism is first introduced by this algorithm of genetic algorithm to particle swarm algorithm to maintain diversity of it and prevent early-maturing phenomenon, and then this thesis introduces search track of momentum algorithm smoothness particle to accelerate convergence rate of particle swarm; finally this thesis applies this algorithm to database multi-connection query optimisation solution to achieve optimal database query scheme. Emulation result indicates this algorithm improves database query efficiency and shortens query response time.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRIS.2018.10013291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
MJQO problem is very complicated, query speed influences execution efficiency of database application software. To solve deficiencies such as low rate of convergence, etc., of PSO algorithm and improve optimisation efficiency of database multi-connection query, this thesis proposes a MJQO method adapting to escape momentum particle swarm optimisation aiming at deficiencies of particle swarm optimisation such as early-maturing, partial optimisation, etc., and it verifies effectiveness of SAEV-MPSO via emulation contrasted test, and this algorithm can obtain optimal query scheme of MJQO in relatively short-time. Crossover mechanism is first introduced by this algorithm of genetic algorithm to particle swarm algorithm to maintain diversity of it and prevent early-maturing phenomenon, and then this thesis introduces search track of momentum algorithm smoothness particle to accelerate convergence rate of particle swarm; finally this thesis applies this algorithm to database multi-connection query optimisation solution to achieve optimal database query scheme. Emulation result indicates this algorithm improves database query efficiency and shortens query response time.