MapReduce optimisation information query method for file management system

Xuguang Zhu, Yuzhi Shen
{"title":"MapReduce optimisation information query method for file management system","authors":"Xuguang Zhu, Yuzhi Shen","doi":"10.1504/IJRIS.2018.10013291","DOIUrl":null,"url":null,"abstract":"MJQO problem is very complicated, query speed influences execution efficiency of database application software. To solve deficiencies such as low rate of convergence, etc., of PSO algorithm and improve optimisation efficiency of database multi-connection query, this thesis proposes a MJQO method adapting to escape momentum particle swarm optimisation aiming at deficiencies of particle swarm optimisation such as early-maturing, partial optimisation, etc., and it verifies effectiveness of SAEV-MPSO via emulation contrasted test, and this algorithm can obtain optimal query scheme of MJQO in relatively short-time. Crossover mechanism is first introduced by this algorithm of genetic algorithm to particle swarm algorithm to maintain diversity of it and prevent early-maturing phenomenon, and then this thesis introduces search track of momentum algorithm smoothness particle to accelerate convergence rate of particle swarm; finally this thesis applies this algorithm to database multi-connection query optimisation solution to achieve optimal database query scheme. Emulation result indicates this algorithm improves database query efficiency and shortens query response time.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRIS.2018.10013291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

MJQO problem is very complicated, query speed influences execution efficiency of database application software. To solve deficiencies such as low rate of convergence, etc., of PSO algorithm and improve optimisation efficiency of database multi-connection query, this thesis proposes a MJQO method adapting to escape momentum particle swarm optimisation aiming at deficiencies of particle swarm optimisation such as early-maturing, partial optimisation, etc., and it verifies effectiveness of SAEV-MPSO via emulation contrasted test, and this algorithm can obtain optimal query scheme of MJQO in relatively short-time. Crossover mechanism is first introduced by this algorithm of genetic algorithm to particle swarm algorithm to maintain diversity of it and prevent early-maturing phenomenon, and then this thesis introduces search track of momentum algorithm smoothness particle to accelerate convergence rate of particle swarm; finally this thesis applies this algorithm to database multi-connection query optimisation solution to achieve optimal database query scheme. Emulation result indicates this algorithm improves database query efficiency and shortens query response time.
文件管理系统MapReduce优化信息查询方法
MJQO问题非常复杂,查询速度直接影响数据库应用软件的执行效率。为了解决粒子群算法收敛速度慢等缺点,提高数据库多连接查询的优化效率,本文针对粒子群算法早熟、局部优化等缺点,提出了一种适应逃逸动量粒子群优化的MJQO方法,并通过仿真对比测试验证了SAEV-MPSO算法的有效性。该算法可以在较短的时间内获得MJQO的最优查询方案。该算法首先将遗传算法的交叉机制引入到粒子群算法中,以保持其多样性,防止早熟现象,然后引入动量算法平滑粒子的搜索轨迹,加快粒子群的收敛速度;最后,本文将该算法应用于数据库多连接查询优化方案中,以实现最优的数据库查询方案。仿真结果表明,该算法提高了数据库查询效率,缩短了查询响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信