Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence

M. Nakano, H. Kameoka, J. Le Roux, Yu Kitano, Nobutaka Ono, S. Sagayama
{"title":"Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence","authors":"M. Nakano, H. Kameoka, J. Le Roux, Yu Kitano, Nobutaka Ono, S. Sagayama","doi":"10.1109/MLSP.2010.5589233","DOIUrl":null,"url":null,"abstract":"This paper presents a new multiplicative algorithm for nonnegative matrix factorization with β-divergence. The derived update rules have a similar form to those of the conventional multiplicative algorithm, only differing through the presence of an exponent term depending on β. The convergence is theoretically proven for any real-valued β based on the auxiliary function method. The convergence speed is experimentally investigated in comparison with previous works.","PeriodicalId":319181,"journal":{"name":"2010 IEEE International Workshop on Machine Learning for Signal Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2010.5589233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

This paper presents a new multiplicative algorithm for nonnegative matrix factorization with β-divergence. The derived update rules have a similar form to those of the conventional multiplicative algorithm, only differing through the presence of an exponent term depending on β. The convergence is theoretically proven for any real-valued β based on the auxiliary function method. The convergence speed is experimentally investigated in comparison with previous works.
具有β-散度的非负矩阵分解的收敛保证乘法算法
提出了一种新的具有β-散度的非负矩阵分解的乘法算法。派生的更新规则与传统的乘法算法具有类似的形式,只是通过存在依赖于β的指数项而有所不同。利用辅助函数法从理论上证明了对任意实值β的收敛性。实验研究了该算法的收敛速度,并与前人的研究结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信