Correlation and Collaboration in Anomaly Detection

R. E. Cullingford
{"title":"Correlation and Collaboration in Anomaly Detection","authors":"R. E. Cullingford","doi":"10.1109/CATCH.2009.34","DOIUrl":null,"url":null,"abstract":"This abstract describes research into improving the capabilities of Intrusion Detection Systems (IDSs) based on probabilistic Anomaly Detection (AD). One technique involves correlating evidence obtained from two or more detection engines to generate wellfounded alarms. A second technique combines evidence from engines running on different sensors to achieve the same goal. In both cases, the aim is to reduce the False-Positive (FP) problem that is characteristic of detection schemes that use AD. We illustrate use of the techniques to augment the capabilities of an existing AD IDS (CounterStorm-1) to allow it to create high-quality alarms in the presence of attempted malicious Data Exfiltration.","PeriodicalId":130933,"journal":{"name":"2009 Cybersecurity Applications & Technology Conference for Homeland Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Cybersecurity Applications & Technology Conference for Homeland Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCH.2009.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This abstract describes research into improving the capabilities of Intrusion Detection Systems (IDSs) based on probabilistic Anomaly Detection (AD). One technique involves correlating evidence obtained from two or more detection engines to generate wellfounded alarms. A second technique combines evidence from engines running on different sensors to achieve the same goal. In both cases, the aim is to reduce the False-Positive (FP) problem that is characteristic of detection schemes that use AD. We illustrate use of the techniques to augment the capabilities of an existing AD IDS (CounterStorm-1) to allow it to create high-quality alarms in the presence of attempted malicious Data Exfiltration.
异常检测中的关联与协作
摘要介绍了基于概率异常检测(AD)技术提高入侵检测系统(ids)能力的研究。一种技术涉及将从两个或多个检测引擎获得的证据关联起来,以产生有根据的警报。第二种技术结合了来自不同传感器上运行的发动机的证据,以达到相同的目标。在这两种情况下,目标都是减少假阳性(FP)问题,这是使用AD的检测方案的特征。我们举例说明使用这些技术来增强现有AD IDS (CounterStorm-1)的功能,使其能够在存在恶意数据泄露的情况下创建高质量的警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信