TSEvo: Evolutionary Counterfactual Explanations for Time Series Classification

Jacqueline Höllig, Cedric Kulbach, Steffen Thoma
{"title":"TSEvo: Evolutionary Counterfactual Explanations for Time Series Classification","authors":"Jacqueline Höllig, Cedric Kulbach, Steffen Thoma","doi":"10.1109/ICMLA55696.2022.00013","DOIUrl":null,"url":null,"abstract":"With the increasing predominance of deep learning methods on time series classification, interpretability becomes essential, especially in high-stake scenarios. Although many approaches to interpretability have been explored for images and tabular data, time series data has been mostly neglected. We approach the problem of interpretability by proposing TSEvo, a model-agnostic multiobjective evolutionary approach to time series counterfactuals incorporating a variety of time series transformation mechanisms to cope with different types and structures of time series. We evaluate our framework on both uni- and multivariate benchmark datasets.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the increasing predominance of deep learning methods on time series classification, interpretability becomes essential, especially in high-stake scenarios. Although many approaches to interpretability have been explored for images and tabular data, time series data has been mostly neglected. We approach the problem of interpretability by proposing TSEvo, a model-agnostic multiobjective evolutionary approach to time series counterfactuals incorporating a variety of time series transformation mechanisms to cope with different types and structures of time series. We evaluate our framework on both uni- and multivariate benchmark datasets.
时间序列分类的进化反事实解释
随着深度学习方法在时间序列分类中的优势日益增强,可解释性变得至关重要,特别是在高风险场景中。虽然已经探索了许多图像和表格数据的可解释性方法,但时间序列数据大多被忽视。我们通过提出TSEvo来解决可解释性问题,TSEvo是一种模型不可知的时间序列反事实多目标进化方法,它结合了多种时间序列转换机制来处理不同类型和结构的时间序列。我们在单变量和多变量基准数据集上评估我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信