{"title":"TSEvo: Evolutionary Counterfactual Explanations for Time Series Classification","authors":"Jacqueline Höllig, Cedric Kulbach, Steffen Thoma","doi":"10.1109/ICMLA55696.2022.00013","DOIUrl":null,"url":null,"abstract":"With the increasing predominance of deep learning methods on time series classification, interpretability becomes essential, especially in high-stake scenarios. Although many approaches to interpretability have been explored for images and tabular data, time series data has been mostly neglected. We approach the problem of interpretability by proposing TSEvo, a model-agnostic multiobjective evolutionary approach to time series counterfactuals incorporating a variety of time series transformation mechanisms to cope with different types and structures of time series. We evaluate our framework on both uni- and multivariate benchmark datasets.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With the increasing predominance of deep learning methods on time series classification, interpretability becomes essential, especially in high-stake scenarios. Although many approaches to interpretability have been explored for images and tabular data, time series data has been mostly neglected. We approach the problem of interpretability by proposing TSEvo, a model-agnostic multiobjective evolutionary approach to time series counterfactuals incorporating a variety of time series transformation mechanisms to cope with different types and structures of time series. We evaluate our framework on both uni- and multivariate benchmark datasets.