Rethinking sensitivity analysis of nuclear simulations with topology

D. Maljovec, Bei Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, Valerio Pascucci
{"title":"Rethinking sensitivity analysis of nuclear simulations with topology","authors":"D. Maljovec, Bei Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, Valerio Pascucci","doi":"10.1109/PACIFICVIS.2016.7465252","DOIUrl":null,"url":null,"abstract":"In nuclear engineering, understanding the safety margins of the nuclear reactor via simulations is arguably of paramount importance in predicting and preventing nuclear accidents. It is therefore crucial to perform sensitivity analysis to understand how changes in the model inputs affect the outputs. Modern nuclear simulation tools rely on numerical representations of the sensitivity information - inherently lacking in visual encodings - offering limited effectiveness in communicating and exploring the generated data. In this paper, we design a framework for sensitivity analysis and visualization of multidimensional nuclear simulation data using partition-based, topology-inspired regression models and report on its efficacy. We rely on the established Morse-Smale regression technique, which allows us to partition the domain into monotonic regions where easily interpretable linear models can be used to assess the influence of inputs on the output variability. The underlying computation is augmented with an intuitive and interactive visual design to effectively communicate sensitivity information to nuclear scientists. Our framework is being deployed into the multipurpose probabilistic risk assessment and uncertainty quantification framework RAVEN (Reactor Analysis and Virtual Control Environment). We evaluate our framework using a simulation dataset studying nuclear fuel performance.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In nuclear engineering, understanding the safety margins of the nuclear reactor via simulations is arguably of paramount importance in predicting and preventing nuclear accidents. It is therefore crucial to perform sensitivity analysis to understand how changes in the model inputs affect the outputs. Modern nuclear simulation tools rely on numerical representations of the sensitivity information - inherently lacking in visual encodings - offering limited effectiveness in communicating and exploring the generated data. In this paper, we design a framework for sensitivity analysis and visualization of multidimensional nuclear simulation data using partition-based, topology-inspired regression models and report on its efficacy. We rely on the established Morse-Smale regression technique, which allows us to partition the domain into monotonic regions where easily interpretable linear models can be used to assess the influence of inputs on the output variability. The underlying computation is augmented with an intuitive and interactive visual design to effectively communicate sensitivity information to nuclear scientists. Our framework is being deployed into the multipurpose probabilistic risk assessment and uncertainty quantification framework RAVEN (Reactor Analysis and Virtual Control Environment). We evaluate our framework using a simulation dataset studying nuclear fuel performance.
基于拓扑的核模拟灵敏度分析再思考
在核工程中,通过模拟来了解核反应堆的安全边际对于预测和预防核事故可以说是至关重要的。因此,执行敏感性分析以了解模型输入的变化如何影响输出是至关重要的。现代核模拟工具依赖于灵敏度信息的数值表示——固有地缺乏视觉编码——在交流和探索生成的数据方面提供有限的有效性。在本文中,我们设计了一个框架,使用基于分区的拓扑启发回归模型对多维核模拟数据进行敏感性分析和可视化,并报告了其有效性。我们依赖于已建立的morse - small回归技术,该技术允许我们将域划分为单调区域,在单调区域中可以使用易于解释的线性模型来评估输入对输出可变性的影响。基础计算增强了直观和交互的视觉设计,有效地向核科学家传达敏感性信息。我们的框架被部署到多用途概率风险评估和不确定性量化框架RAVEN(反应堆分析和虚拟控制环境)中。我们使用研究核燃料性能的模拟数据集来评估我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信