Adaptive Dual AK-D Tree Search Algorithm for ICP Registration Applications

Jiann-Der Lee, Shih-Sen Hsieh, Chung-Hsien Huang, Li-Chang Liu, Cheien-Tsai Wu, Shin-Tseng Lee, Jyi-Feng Chen
{"title":"Adaptive Dual AK-D Tree Search Algorithm for ICP Registration Applications","authors":"Jiann-Der Lee, Shih-Sen Hsieh, Chung-Hsien Huang, Li-Chang Liu, Cheien-Tsai Wu, Shin-Tseng Lee, Jyi-Feng Chen","doi":"10.1109/ICME.2006.262598","DOIUrl":null,"url":null,"abstract":"An algorithm for finding coupling points plays an important role in the iterative closest point algorithm (ICP) which is widely used in registration applications in medical and 3-D architecture areas. In recent researches of finding coupling points, Approximate K-D tree search algorithm (AK-D tree) is an efficient nearest neighbor search algorithm with comparable results. We proposed adaptive dual AK-D tree search algorithm (ADAK-D tree) for searching and synthesizing coupling points as significant control points to improve the registration accuracy in ICP registration applications. ADAK-D tree utilizes AK-D tree twice in different geometrical projection orders to reserve true nearest neighbor points used in later ICP stages. An adaptive threshold in ADAK-D tree is used to reserve sufficient coupling points for a smaller alignment error. Experimental results are shown that the registration accuracy of using ADAK-D tree is improved more than the result of using AK-D tree and the computation time is acceptable","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An algorithm for finding coupling points plays an important role in the iterative closest point algorithm (ICP) which is widely used in registration applications in medical and 3-D architecture areas. In recent researches of finding coupling points, Approximate K-D tree search algorithm (AK-D tree) is an efficient nearest neighbor search algorithm with comparable results. We proposed adaptive dual AK-D tree search algorithm (ADAK-D tree) for searching and synthesizing coupling points as significant control points to improve the registration accuracy in ICP registration applications. ADAK-D tree utilizes AK-D tree twice in different geometrical projection orders to reserve true nearest neighbor points used in later ICP stages. An adaptive threshold in ADAK-D tree is used to reserve sufficient coupling points for a smaller alignment error. Experimental results are shown that the registration accuracy of using ADAK-D tree is improved more than the result of using AK-D tree and the computation time is acceptable
ICP注册申请的自适应双AK-D树搜索算法
迭代最近点算法(ICP)广泛应用于医疗和三维建筑领域的配准中,耦合点的寻找算法在其中起着重要的作用。在最近的寻找耦合点的研究中,近似K-D树搜索算法(Approximate K-D tree search algorithm, AK-D tree)是一种效率高、结果可比较的最近邻搜索算法。为了提高ICP配准应用中的配准精度,提出了自适应双AK-D树搜索算法(ADAK-D树),用于搜索和合成耦合点作为重要控制点。ADAK-D树以不同的几何投影顺序两次利用AK-D树来保留后期ICP阶段使用的真正最近邻点。在ADAK-D树中采用自适应阈值,为较小的对准误差保留足够的耦合点。实验结果表明,使用ADAK-D树的配准精度比使用AK-D树的配准精度有较大提高,且计算时间可以接受
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信