{"title":"A Bayesian Information Flow Approach to Image Segmentation","authors":"A. Mishra, A. Wong, David A Clausi, P. Fieguth","doi":"10.1109/CRV.2010.46","DOIUrl":null,"url":null,"abstract":"A novel Bayesian information flow approach is presented for accurate image segmentation, formulated as a maximum a posteriori (MAP) problem as per the popular Mumford-Shah (MS) model. The model is solved using an iterative Bayesian estimation approach conditioned on the flow of information within the image, where the flow is based on inter-pixel interactions and intra-region smoothness constraints. In this way, a localized and accurate Bayesian estimate of the underlying piece-wise constant regions within an image can be found, even under high noise and low contrast situations. Experimental results using 2-D images show that the proposed Bayesian information flow approach is capable of producing more accurate segmentations when compared to state-of-the-art segmentation methods, especially under scenarios with high noise levels and poor contrast.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel Bayesian information flow approach is presented for accurate image segmentation, formulated as a maximum a posteriori (MAP) problem as per the popular Mumford-Shah (MS) model. The model is solved using an iterative Bayesian estimation approach conditioned on the flow of information within the image, where the flow is based on inter-pixel interactions and intra-region smoothness constraints. In this way, a localized and accurate Bayesian estimate of the underlying piece-wise constant regions within an image can be found, even under high noise and low contrast situations. Experimental results using 2-D images show that the proposed Bayesian information flow approach is capable of producing more accurate segmentations when compared to state-of-the-art segmentation methods, especially under scenarios with high noise levels and poor contrast.