The Thermodynamics of a Stochastic Geometry Model with Applications to Non-Extensive Statistics

O. Kazemi, A. Pourdarvish, J. Sadeghi
{"title":"The Thermodynamics of a Stochastic Geometry Model with Applications to Non-Extensive Statistics","authors":"O. Kazemi, A. Pourdarvish, J. Sadeghi","doi":"10.31390/josa.3.2.05","DOIUrl":null,"url":null,"abstract":"We use the escort distribution instead of the original distribution for calculating the moment generating function and the physical quantities in non-extensive statistical mechanics. According to the associated escort distribution, we obtain the moment generating function for some random variables. In the following, we consider the model of continuum percolation in stochastic geometry and percolation theory which is obtained by connecting the Poisson points with a probability that depends on their relative position. Using a formal expression for the probability of the size of a cluster at the origin provided by Penrose, we derive the q-thermodynamic quantities to evaluate these quantities performance in obtaining the critical point when the percolation occurs. Also, by plotting the q-thermodynamic quantities, we show very interesting fluctuations at the critical point.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.3.2.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use the escort distribution instead of the original distribution for calculating the moment generating function and the physical quantities in non-extensive statistical mechanics. According to the associated escort distribution, we obtain the moment generating function for some random variables. In the following, we consider the model of continuum percolation in stochastic geometry and percolation theory which is obtained by connecting the Poisson points with a probability that depends on their relative position. Using a formal expression for the probability of the size of a cluster at the origin provided by Penrose, we derive the q-thermodynamic quantities to evaluate these quantities performance in obtaining the critical point when the percolation occurs. Also, by plotting the q-thermodynamic quantities, we show very interesting fluctuations at the critical point.
随机几何模型的热力学及其在非广泛统计中的应用
在非泛化统计力学中,我们用护航分布代替原分布来计算矩生成函数和物理量。根据伴生分布,得到了一些随机变量的矩生成函数。下面,我们考虑随机几何和渗流理论中的连续渗流模型,该模型是通过将泊松点与依赖于其相对位置的概率联系起来获得的。利用Penrose提供的原点处簇大小概率的正式表达式,我们导出了q-热力学量,以评估这些量在获得渗流发生时的临界点时的性能。同样,通过绘制q-热力学量,我们在临界点处展示了非常有趣的波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信