Nonparametric Tests for Superior Predictive Ability

Stelios Arvanitis, S. Karabatı, T. Post, Valerio Potì
{"title":"Nonparametric Tests for Superior Predictive Ability","authors":"Stelios Arvanitis, S. Karabatı, T. Post, Valerio Potì","doi":"10.2139/ssrn.3251944","DOIUrl":null,"url":null,"abstract":"Abstract A nonparametric method for comparing multiple forecast models is developed and implemented. The hypothesis of Optimal Predictive Ability generalizes the Superior Predictive Ability hypothesis from a single given loss function to an entire class of loss functions. Distinction is drawn between General Loss functions, Convex Loss functions and Symmetric Convex Loss functions. The research hypothesis is formulated in terms of moment inequality conditions. The empirical moment conditions are reduced to an exact and finite system of linear inequalities based on piecewise-linear loss functions. The hypothesis can be tested in a statistically consistent way using a blockwise Empirical Likelihood Ratio test statistic. A computationally feasible test procedure computes the test statistic using Convex Optimization methods, and estimates conservative, data-dependent critical values using a majorizing chi-square limit distribution and a moment selection method. An empirical application to inflation forecasting reveals that a very large majority of thousands of forecast models are redundant, leaving predominantly Phillips Curve type models, when convexity and symmetry are assumed.","PeriodicalId":372343,"journal":{"name":"DecisionSciRN: Decision-Making & Forecasting (Topic)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Decision-Making & Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3251944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A nonparametric method for comparing multiple forecast models is developed and implemented. The hypothesis of Optimal Predictive Ability generalizes the Superior Predictive Ability hypothesis from a single given loss function to an entire class of loss functions. Distinction is drawn between General Loss functions, Convex Loss functions and Symmetric Convex Loss functions. The research hypothesis is formulated in terms of moment inequality conditions. The empirical moment conditions are reduced to an exact and finite system of linear inequalities based on piecewise-linear loss functions. The hypothesis can be tested in a statistically consistent way using a blockwise Empirical Likelihood Ratio test statistic. A computationally feasible test procedure computes the test statistic using Convex Optimization methods, and estimates conservative, data-dependent critical values using a majorizing chi-square limit distribution and a moment selection method. An empirical application to inflation forecasting reveals that a very large majority of thousands of forecast models are redundant, leaving predominantly Phillips Curve type models, when convexity and symmetry are assumed.
卓越预测能力的非参数检验
摘要提出并实现了一种比较多个预测模型的非参数方法。最优预测能力假设将最优预测能力假设从单个给定的损失函数推广到整个损失函数类。区分了一般损失函数、凸损失函数和对称凸损失函数。研究假设是根据力矩不相等的条件来制定的。经验矩条件被简化为基于分段线性损失函数的精确有限线性不等式系统。假设可以使用块经验似然比检验统计量以统计一致的方式进行检验。计算上可行的检验程序使用凸优化方法计算检验统计量,并使用卡方极限分布和矩选择方法估计保守的、数据相关的临界值。对通货膨胀预测的经验应用表明,当假设凸性和对称性时,成千上万的预测模型中的绝大多数都是冗余的,留下的主要是菲利普斯曲线型模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信