S. V. Baelen, Stan Drijkoningen, C. Moons, M. R. Afzal, P. Slaets
{"title":"Experimental identification of the dynamic characteristics for a 1/25 scale model of the Watertruck+ self-propelling barge","authors":"S. V. Baelen, Stan Drijkoningen, C. Moons, M. R. Afzal, P. Slaets","doi":"10.1109/OCEANSE.2019.8867545","DOIUrl":null,"url":null,"abstract":"This study discusses the experimental identification of the dynamic characteristics for an operational 1/25 scale model of the Watertruck+ self-propelling barge of CEMT class I. Parameters such as flow rate, acceleration, thrust and speed-dependent resistance forces in the longitudinal direction are determined. The operational scale model discussed in this paper includes a hull with length 1.54 m, width of 0.2 m and height of 0.2 m. All experiments are performed at an indoor pool to reduce environmental disturbances such as wind and current. The vessel’s behavior and propulsion system, i.e. a 4-pump system, is analyzed and subsequently validated by modeling the pump circuit and corresponding pipe losses. The experimental results of the resistance forces are validated by applying Computational Flow Dynamics in SolidWorks, using the Finite Volume Method. By generating the pump and pipeline characteristic, the operating point is determined that provides insight on the overall efficiency, which is equal to 11.36%. Moreover, a second order polynomial is fitted to the experimental resistance forces, with a correlation coefficient of 0.99, which suggest a high accuracy and feasibility of the identified parameters. Results indicate that minor hardware improvements in the pump circuit would improve the performance significantly; however, the current vessel and propulsion system are suited for envisioned future research objectives such as testing new control algorithms.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This study discusses the experimental identification of the dynamic characteristics for an operational 1/25 scale model of the Watertruck+ self-propelling barge of CEMT class I. Parameters such as flow rate, acceleration, thrust and speed-dependent resistance forces in the longitudinal direction are determined. The operational scale model discussed in this paper includes a hull with length 1.54 m, width of 0.2 m and height of 0.2 m. All experiments are performed at an indoor pool to reduce environmental disturbances such as wind and current. The vessel’s behavior and propulsion system, i.e. a 4-pump system, is analyzed and subsequently validated by modeling the pump circuit and corresponding pipe losses. The experimental results of the resistance forces are validated by applying Computational Flow Dynamics in SolidWorks, using the Finite Volume Method. By generating the pump and pipeline characteristic, the operating point is determined that provides insight on the overall efficiency, which is equal to 11.36%. Moreover, a second order polynomial is fitted to the experimental resistance forces, with a correlation coefficient of 0.99, which suggest a high accuracy and feasibility of the identified parameters. Results indicate that minor hardware improvements in the pump circuit would improve the performance significantly; however, the current vessel and propulsion system are suited for envisioned future research objectives such as testing new control algorithms.