Automatic lexical pronunciations generation and update

Ghinwa F. Choueiter, S. Seneff, James R. Glass
{"title":"Automatic lexical pronunciations generation and update","authors":"Ghinwa F. Choueiter, S. Seneff, James R. Glass","doi":"10.1109/ASRU.2007.4430113","DOIUrl":null,"url":null,"abstract":"Most automatic speech recognizers use a dictionary that maps words to one or more canonical pronunciations. Such entries are typically hand-written by lexical experts. In this research, we investigate a new approach for automatically generating lexical pronunciations using a linguistically motivated subword model, and refining the pronunciations with spoken examples. The approach is evaluated on an isolated word recognition task with a 2 k lexicon of restaurant and street names. A letter-to-sound model is first used to generate seed baseforms for the lexicon. Then spoken utterances of words in the lexicon are presented to a subword recognizer and the top hypotheses are used to update the lexical base-forms. The spelling of each word is also used to constrain the subword search space and generate spelling-constrained baseforms. The results obtained are quite encouraging and indicate that our approach can be successfully used to learn valid pronunciations of new words.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Most automatic speech recognizers use a dictionary that maps words to one or more canonical pronunciations. Such entries are typically hand-written by lexical experts. In this research, we investigate a new approach for automatically generating lexical pronunciations using a linguistically motivated subword model, and refining the pronunciations with spoken examples. The approach is evaluated on an isolated word recognition task with a 2 k lexicon of restaurant and street names. A letter-to-sound model is first used to generate seed baseforms for the lexicon. Then spoken utterances of words in the lexicon are presented to a subword recognizer and the top hypotheses are used to update the lexical base-forms. The spelling of each word is also used to constrain the subword search space and generate spelling-constrained baseforms. The results obtained are quite encouraging and indicate that our approach can be successfully used to learn valid pronunciations of new words.
自动词汇发音生成和更新
大多数自动语音识别器使用字典将单词映射到一个或多个标准发音。这些条目通常是由词汇专家手写的。在这项研究中,我们研究了一种使用语言动机子词模型自动生成词汇发音的新方法,并通过口语例子来改进发音。该方法在一个孤立的单词识别任务上进行了评估,该任务使用了一个2k的餐馆和街道名称词典。首先使用字母到声音模型为词典生成种子基表单。然后将词汇中的话语呈现给子词识别器,并使用最上面的假设来更新词汇基本形式。每个单词的拼写还用于约束子单词搜索空间并生成拼写约束的基形式。实验结果令人鼓舞,表明我们的方法可以成功地用于新单词的有效发音学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信