Highlight sound effects detection in audio stream

Rui Cai, Lie Lu, HongJiang Zhang, Lianhong Cai
{"title":"Highlight sound effects detection in audio stream","authors":"Rui Cai, Lie Lu, HongJiang Zhang, Lianhong Cai","doi":"10.1109/ICME.2003.1221242","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of highlight sound effects detection in audio stream, which is very useful in fields of video summarization and highlight extraction. Unlike researches on audio segmentation and classification, in this domain, it just locates those highlight sound effects in audio stream. An extensible framework is proposed and in current system three sound effects are considered: laughter, applause and cheer, which are tied up with highlight events in entertainments, sports, meetings and home videos. HMMs are used to model these sound effects and a log-likelihood scores based method is used to make final decision. A sound effect attention model is also proposed to extend general audio attention model for highlight extraction and video summarization. Evaluations on a 2-hours audio database showed very encouraging results.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1221242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

Abstract

This paper addresses the problem of highlight sound effects detection in audio stream, which is very useful in fields of video summarization and highlight extraction. Unlike researches on audio segmentation and classification, in this domain, it just locates those highlight sound effects in audio stream. An extensible framework is proposed and in current system three sound effects are considered: laughter, applause and cheer, which are tied up with highlight events in entertainments, sports, meetings and home videos. HMMs are used to model these sound effects and a log-likelihood scores based method is used to make final decision. A sound effect attention model is also proposed to extend general audio attention model for highlight extraction and video summarization. Evaluations on a 2-hours audio database showed very encouraging results.
突出显示音频流中的声音效果检测
本文研究了音频流中的高亮音效检测问题,该问题在视频摘要和高亮提取领域具有重要的应用价值。与音频分割和分类的研究不同,该领域只定位音频流中那些突出的声音效果。提出了一个可扩展的框架,并在当前系统中考虑了三种声音效果:笑声,掌声和欢呼,这与娱乐,体育,会议和家庭视频中的重点事件有关。hmm用于模拟这些声音效果,并使用基于对数似然评分的方法来做出最终决定。提出了一种声音效果注意模型来扩展一般音频注意模型,用于高光提取和视频摘要。对2小时音频数据库的评估显示了非常令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信