Nonlinear Time Series Analysis of Coupled Bursting Neuron Model Depending on Coupling Strength

Y. Uwate, Y. Nishio
{"title":"Nonlinear Time Series Analysis of Coupled Bursting Neuron Model Depending on Coupling Strength","authors":"Y. Uwate, Y. Nishio","doi":"10.1109/ISOCC47750.2019.9027710","DOIUrl":null,"url":null,"abstract":"It is well known that burst patterns within neurons may have some important role for operating information processing in a brain. However, the analysis of judgement of synchronization and correlation between burst patterns is not so easy. Therefore, we have proposed a visualization method of bursting patterns of whole neural network using nonlinear time series analysis. Additionally, we consider that it is required to construct a model using mathematical neuron model producing burst patterns, because it is difficult to obtain real biological neuron data. In this study, we propose a visualization method of network characteristics of FitzHu-Nagumo (FHN) neuron model using nonlinear time-series analysis.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9027710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that burst patterns within neurons may have some important role for operating information processing in a brain. However, the analysis of judgement of synchronization and correlation between burst patterns is not so easy. Therefore, we have proposed a visualization method of bursting patterns of whole neural network using nonlinear time series analysis. Additionally, we consider that it is required to construct a model using mathematical neuron model producing burst patterns, because it is difficult to obtain real biological neuron data. In this study, we propose a visualization method of network characteristics of FitzHu-Nagumo (FHN) neuron model using nonlinear time-series analysis.
基于耦合强度的耦合爆破神经元模型非线性时间序列分析
众所周知,神经元内的突发模式可能对大脑的信息处理操作起着重要作用。然而,分析和判断突发模式之间的同步性和相关性并不是那么容易的。因此,我们提出了一种基于非线性时间序列分析的全神经网络爆炸模式可视化方法。此外,由于难以获得真实的生物神经元数据,我们认为需要使用产生突发模式的数学神经元模型来构建模型。在本研究中,我们提出了一种基于非线性时间序列分析的fitju - nagumo (FHN)神经元模型的网络特征可视化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信