Performance analysis of emerging data analytics and HPC workloads

C. Daley, Prabhat, S. Dosanjh, N. Wright
{"title":"Performance analysis of emerging data analytics and HPC workloads","authors":"C. Daley, Prabhat, S. Dosanjh, N. Wright","doi":"10.1145/3149393.3149400","DOIUrl":null,"url":null,"abstract":"Supercomputers are increasingly being used to run a data analytics workload in addition to a traditional simulation science workload. This mixed workload must be rigorously characterized to ensure that appropriately balanced machines are deployed. In this paper we analyze a suite of applications representing the simulation science and data workload at the NERSC supercomputing center. We show how time is spent in application compute, library compute, communication and I/O, and present application performance on both the Intel Xeon and Intel Xeon-Phi partitions of the Cori supercomputer. We find commonality in the libraries used, I/O motifs and methods of parallelism, and obtain similar node-to-node performance for the base application configurations. We demonstrate that features of the Intel Xeon-Phi node architecture and a Burst Buffer can improve application performance, providing evidence that an exascale-era energy-efficient platform can support a mixed workload.","PeriodicalId":262458,"journal":{"name":"Proceedings of the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149393.3149400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Supercomputers are increasingly being used to run a data analytics workload in addition to a traditional simulation science workload. This mixed workload must be rigorously characterized to ensure that appropriately balanced machines are deployed. In this paper we analyze a suite of applications representing the simulation science and data workload at the NERSC supercomputing center. We show how time is spent in application compute, library compute, communication and I/O, and present application performance on both the Intel Xeon and Intel Xeon-Phi partitions of the Cori supercomputer. We find commonality in the libraries used, I/O motifs and methods of parallelism, and obtain similar node-to-node performance for the base application configurations. We demonstrate that features of the Intel Xeon-Phi node architecture and a Burst Buffer can improve application performance, providing evidence that an exascale-era energy-efficient platform can support a mixed workload.
新兴数据分析和高性能计算工作负载的性能分析
除了传统的模拟科学工作外,超级计算机越来越多地用于运行数据分析工作负载。必须严格地描述这种混合工作负载,以确保部署了适当平衡的机器。本文分析了一组代表NERSC超级计算中心模拟科学和数据工作负载的应用程序。我们展示了如何在应用程序计算、库计算、通信和I/O上花费时间,并展示了Cori超级计算机的Intel Xeon和Intel Xeon- phi分区上的应用程序性能。我们发现了所使用的库、I/O主题和并行性方法的共性,并为基本应用程序配置获得了类似的节点到节点性能。我们证明了Intel Xeon-Phi节点架构和Burst Buffer的特性可以提高应用程序的性能,证明了百亿亿级时代的节能平台可以支持混合工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信