Estimation of S11 Values of Patch Antenna Using Various Machine Learning Models

R. Jain, Pinku Ranjan, P. Singhal, V. Thakare
{"title":"Estimation of S11 Values of Patch Antenna Using Various Machine Learning Models","authors":"R. Jain, Pinku Ranjan, P. Singhal, V. Thakare","doi":"10.1109/IATMSI56455.2022.10119256","DOIUrl":null,"url":null,"abstract":"Compact, wide-band, high efficiency, multiband, and relatively affordable antennas are required by recent advancements in wireless communications for use in modern applications. This work shows how machine learning methods can be used to predict the S11 (return loss) parameters of microstrip patch antenna. The same dimensions were used throughout the design process. The simulated dataset is utilized to create a Machine Learning model, which is then applied to predict the S11 values. The machine learning models like Decision Tree, Random Forest, XG Boost & KNN is also developed using the same dataset. When the anticipated result is compared, it is shown that the model using KNN yields superior results.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Compact, wide-band, high efficiency, multiband, and relatively affordable antennas are required by recent advancements in wireless communications for use in modern applications. This work shows how machine learning methods can be used to predict the S11 (return loss) parameters of microstrip patch antenna. The same dimensions were used throughout the design process. The simulated dataset is utilized to create a Machine Learning model, which is then applied to predict the S11 values. The machine learning models like Decision Tree, Random Forest, XG Boost & KNN is also developed using the same dataset. When the anticipated result is compared, it is shown that the model using KNN yields superior results.
利用各种机器学习模型估计贴片天线的S11值
紧凑、宽频、高效率、多频带和相对便宜的天线是现代应用中无线通信的最新发展所需要的。这项工作展示了如何使用机器学习方法来预测微带贴片天线的S11(回波损耗)参数。在整个设计过程中使用了相同的尺寸。利用模拟数据集创建机器学习模型,然后应用该模型预测S11值。机器学习模型,如决策树,随机森林,XG Boost和KNN也使用相同的数据集开发。当预期结果进行比较时,表明使用KNN的模型产生了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信