On feasibility and optimization of WiTricity technology for implantable medical devices

L. Mandache, A. Marinescu, M. Iordache
{"title":"On feasibility and optimization of WiTricity technology for implantable medical devices","authors":"L. Mandache, A. Marinescu, M. Iordache","doi":"10.1109/ISFEE.2016.7803164","DOIUrl":null,"url":null,"abstract":"The present accelerated development of microelectronics led to new health care applications that previously could not have been designed and here can be cited the active implanted medical devices - IMD. But their supply implies the existence of a power source, usually a battery whose lifetime is limited and must be changed so it requires repeated incisions. This paper presents an analysis of Transcutaneous Energy Transfer - TET for recharging the batteries from the IMDs based on wireless technology. It is shown that, by using magnetic resonance (WiTricity), namely a variant thereof, the energy and data transmission are not restricted by the position of the patient (receiver) with respect to the source (transmitter).","PeriodicalId":240170,"journal":{"name":"2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISFEE.2016.7803164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The present accelerated development of microelectronics led to new health care applications that previously could not have been designed and here can be cited the active implanted medical devices - IMD. But their supply implies the existence of a power source, usually a battery whose lifetime is limited and must be changed so it requires repeated incisions. This paper presents an analysis of Transcutaneous Energy Transfer - TET for recharging the batteries from the IMDs based on wireless technology. It is shown that, by using magnetic resonance (WiTricity), namely a variant thereof, the energy and data transmission are not restricted by the position of the patient (receiver) with respect to the source (transmitter).
植入式医疗器械WiTricity技术的可行性及优化研究
目前微电子技术的加速发展导致了以前无法设计的新的医疗保健应用,这里可以引用有源植入医疗设备- IMD。但它们的供应意味着电源的存在,通常是电池,其寿命有限,必须更换,因此需要反复切割。本文介绍了一种基于无线技术的经皮能量传输技术(transccutaneous Energy Transfer - TET)。结果表明,通过使用磁共振(WiTricity),即其变体,能量和数据传输不受患者(接收器)相对于源(发射器)的位置的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信