Thermosolutal natural convection cooling process of a thermal source inside a partially porous cavity

M. Touiker, A. Bourouis, A. Omara, Rabah Bouchair
{"title":"Thermosolutal natural convection cooling process of a thermal source inside a partially porous cavity","authors":"M. Touiker, A. Bourouis, A. Omara, Rabah Bouchair","doi":"10.1080/15502287.2022.2120443","DOIUrl":null,"url":null,"abstract":"Abstract This work deals with the numerical study of the thermosolutal natural convection from a heat source immerged in a porous layer, which is placed vertically inside a square cavity. All walls of the cavity are thermally insulated, except the right wall, which is maintained at cold temperature. For the mass boundary conditions, the vertical walls are subjected to a gradient of concentration, whereas the horizontal walls and the part of the left wall that contacts with the heat source are impermeable. The finite volume method and the SIMPLER algorithm are employed to solve the mathematical equations. The effects of several geometrical and physical parameters are analyzed, such as vertical heat source positions (0 ≤ Yp ≤ 0.8), the porous layer thickness (0 ≤ Xp ≤ 1), the thermal conductivity ratio (1 ≤ Kr ≤ 100), Darcy number (10−6 ≤ Da ≤ 10−2), Rayleigh number (104 ≤ Ra ≤ 106), Lewis number (0.1 ≤ Le ≤ 10), and the buoyancy ratio (-5 ≤ N ≤ 5). The results indicate that the best cooling of the heat source is observed when the Yp is located between 0.38 and 0.55. Moreover, the case of coupling heat and mass transfer (N ≠ 0) offers low maximum heat source temperature compared to that of the classical natural convection (N = 0), especially with an increase in the Ra number and N and/or a decrease in the Le number. In addition, an increase in the thermal conductivity ratio and the permeability of the porous layer (Da) enhances the cooling process of the thermal source.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2022.2120443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This work deals with the numerical study of the thermosolutal natural convection from a heat source immerged in a porous layer, which is placed vertically inside a square cavity. All walls of the cavity are thermally insulated, except the right wall, which is maintained at cold temperature. For the mass boundary conditions, the vertical walls are subjected to a gradient of concentration, whereas the horizontal walls and the part of the left wall that contacts with the heat source are impermeable. The finite volume method and the SIMPLER algorithm are employed to solve the mathematical equations. The effects of several geometrical and physical parameters are analyzed, such as vertical heat source positions (0 ≤ Yp ≤ 0.8), the porous layer thickness (0 ≤ Xp ≤ 1), the thermal conductivity ratio (1 ≤ Kr ≤ 100), Darcy number (10−6 ≤ Da ≤ 10−2), Rayleigh number (104 ≤ Ra ≤ 106), Lewis number (0.1 ≤ Le ≤ 10), and the buoyancy ratio (-5 ≤ N ≤ 5). The results indicate that the best cooling of the heat source is observed when the Yp is located between 0.38 and 0.55. Moreover, the case of coupling heat and mass transfer (N ≠ 0) offers low maximum heat source temperature compared to that of the classical natural convection (N = 0), especially with an increase in the Ra number and N and/or a decrease in the Le number. In addition, an increase in the thermal conductivity ratio and the permeability of the porous layer (Da) enhances the cooling process of the thermal source.
部分多孔腔内热源的热溶质自然对流冷却过程
摘要本文对垂直放置于方形空腔内的多孔层中热源的热溶质自然对流进行了数值研究。除右壁保持低温外,空腔的所有壁都是隔热的。对于质量边界条件,垂直壁面受到浓度梯度的影响,而水平壁面和与热源接触的左侧壁面则不透水。采用有限体积法和simple算法求解数学方程。分析了垂直热源位置(0≤Yp≤0.8)、多孔层厚度(0≤Xp≤1)、导热系数(1≤Kr≤100)、达西数(10−6≤Da≤10−2)、瑞利数(104≤Ra≤106)、刘易斯数(0.1≤Le≤10)、浮力比(-5≤N≤5)等几何物理参数的影响。结果表明,当Yp在0.38 ~ 0.55之间时,热源冷却效果最佳。此外,与经典自然对流(N = 0)相比,耦合传热传质情况下(N≠0)的最大热源温度较低,特别是Ra数和N的增加和/或Le数的减少。此外,导热系数和多孔层渗透性(Da)的增加,增强了热源的冷却过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信