RSC-DGS: Fusion of RGB and NIR Images Using Robust Spectral Consistency and Dynamic Gradient Sparsity

Shengtao Yu, Cheolkon Jung, Kailong Zhou, Chen Su
{"title":"RSC-DGS: Fusion of RGB and NIR Images Using Robust Spectral Consistency and Dynamic Gradient Sparsity","authors":"Shengtao Yu, Cheolkon Jung, Kailong Zhou, Chen Su","doi":"10.1145/3338533.3368261","DOIUrl":null,"url":null,"abstract":"Color (RGB) images captured under low light condition contain much noise with loss of textures. Since near-infrared (NIR) images are robust to noise with clear textures even in low light condition, they can be used to enhance low light RGB images by image fusion. In this paper, we propose fusion of RGB and NIR images using robust spectral consistency (RSC) and dynamic gradient sparsity (DGS), called RSC-DGS. We build the RSC model based on a robust error function to remove noise and preserve color/spectral consistency. We construct the DGS model based on vectorial total variation minimization that uses the NIR image as the reference image. The DGS model transfers clear textures of the NIR image to the fusion result and successfully preserves cross-channel interdependency of the RGB image. We use alternating direction method of multipliers (ADMM) for efficiency to solve the proposed RSC-DGS fusion. Experimental results confirm that the proposed method effectively preserves color/spectral consistency and textures in fusion results while successfully removing noise with high computational efficiency.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3368261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Color (RGB) images captured under low light condition contain much noise with loss of textures. Since near-infrared (NIR) images are robust to noise with clear textures even in low light condition, they can be used to enhance low light RGB images by image fusion. In this paper, we propose fusion of RGB and NIR images using robust spectral consistency (RSC) and dynamic gradient sparsity (DGS), called RSC-DGS. We build the RSC model based on a robust error function to remove noise and preserve color/spectral consistency. We construct the DGS model based on vectorial total variation minimization that uses the NIR image as the reference image. The DGS model transfers clear textures of the NIR image to the fusion result and successfully preserves cross-channel interdependency of the RGB image. We use alternating direction method of multipliers (ADMM) for efficiency to solve the proposed RSC-DGS fusion. Experimental results confirm that the proposed method effectively preserves color/spectral consistency and textures in fusion results while successfully removing noise with high computational efficiency.
RSC-DGS:基于鲁棒光谱一致性和动态梯度稀疏性的RGB和NIR图像融合
在弱光条件下拍摄的彩色(RGB)图像含有大量的噪声和纹理损失。由于近红外(NIR)图像即使在弱光条件下也具有清晰纹理的鲁棒性,因此可以通过图像融合来增强弱光RGB图像。在本文中,我们提出了使用鲁棒光谱一致性(RSC)和动态梯度稀疏性(DGS)(称为RSC-DGS)来融合RGB和NIR图像。我们建立了基于鲁棒误差函数的RSC模型,以去除噪声并保持颜色/光谱一致性。我们以近红外图像为参考图像,构建了基于矢量总变差最小化的DGS模型。DGS模型将近红外图像的清晰纹理转移到融合结果中,并成功地保留了RGB图像的跨通道相互依赖性。为了提高效率,我们采用了交替方向乘法器(ADMM)来解决RSC-DGS融合问题。实验结果表明,该方法有效地保留了融合结果的颜色/光谱一致性和纹理,同时成功地消除了噪声,计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信