Data mining for meteorological applications: Decision trees for modeling rainfall prediction

A. Geetha, G. M. Nasira
{"title":"Data mining for meteorological applications: Decision trees for modeling rainfall prediction","authors":"A. Geetha, G. M. Nasira","doi":"10.1109/ICCIC.2014.7238481","DOIUrl":null,"url":null,"abstract":"Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity, wind speed and direction, which are changing from time to time and weather calculation varies with the geographical location along with its atmospheric variables. There are many data mining techniques employed for weather prediction, but decision tree evaluation can be quantified. This paper highlights a model using decision tree to predict weather phenomena like fog, rainfall, cyclones and thunderstorms, which can be a life saving information and used by peoples of all walks of life in making wise and intelligent decisions. This model may be used in machine learning and further promises the scope for improvement as more and more relevant attributes can be used in predicting the dependent variables. The proposed model is implemented using the open source data mining tool Rapidminer.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity, wind speed and direction, which are changing from time to time and weather calculation varies with the geographical location along with its atmospheric variables. There are many data mining techniques employed for weather prediction, but decision tree evaluation can be quantified. This paper highlights a model using decision tree to predict weather phenomena like fog, rainfall, cyclones and thunderstorms, which can be a life saving information and used by peoples of all walks of life in making wise and intelligent decisions. This model may be used in machine learning and further promises the scope for improvement as more and more relevant attributes can be used in predicting the dependent variables. The proposed model is implemented using the open source data mining tool Rapidminer.
气象应用的数据挖掘:模拟降雨预测的决策树
预测是一项具有挑战性的任务,天气预测甚至更加复杂、动态和令人难以置信。天气预报自古以来就是一项艰巨的任务,因为它依赖于各种参数来预测因变量,如温度、降雨量、湿度、风速和方向,这些因变量是不断变化的,天气计算随着地理位置和大气变量的变化而变化。有许多用于天气预报的数据挖掘技术,但决策树评估可以量化。本文重点介绍了一个利用决策树来预测雾、降雨、旋风和雷暴等天气现象的模型,这是一个可以拯救生命的信息,可以被各行各业的人们用来做出明智和明智的决策。这个模型可以用于机器学习,并且随着越来越多的相关属性可以用于预测因变量,进一步保证了改进的范围。该模型使用开源数据挖掘工具Rapidminer实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信