Water Level Detection from CCTV Cameras using a Deep Learning Approach

Punyanuch Borwarnginn, J. Haga, Worapan Kusakunniran
{"title":"Water Level Detection from CCTV Cameras using a Deep Learning Approach","authors":"Punyanuch Borwarnginn, J. Haga, Worapan Kusakunniran","doi":"10.1109/TENCON50793.2020.9293865","DOIUrl":null,"url":null,"abstract":"Natural disasters are a global problem that causes widespread losses and damage. A system to provide timely information is required in order to help reduce losses. Flooding is one of the major natural disasters that requires a monitoring and detection system. The traditional flood detection systems use remote sensors such as river water levels and rainfall to provide information to both disaster management professionals and the general public. There is an attempt to use visual information such as CCTV cameras to detect extreme flooding events; however, it requires human experts and consistent attention to monitor any changes. In this paper, we introduce an approach to the automatic river water level detection using deep learning to determine the water level from surveillance cameras. The model achieves 93% accuracy using a single camera location and 83% accuracy using multiple camera locations.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Natural disasters are a global problem that causes widespread losses and damage. A system to provide timely information is required in order to help reduce losses. Flooding is one of the major natural disasters that requires a monitoring and detection system. The traditional flood detection systems use remote sensors such as river water levels and rainfall to provide information to both disaster management professionals and the general public. There is an attempt to use visual information such as CCTV cameras to detect extreme flooding events; however, it requires human experts and consistent attention to monitor any changes. In this paper, we introduce an approach to the automatic river water level detection using deep learning to determine the water level from surveillance cameras. The model achieves 93% accuracy using a single camera location and 83% accuracy using multiple camera locations.
利用深度学习方法从闭路电视摄像机中检测水位
自然灾害是一个全球性问题,造成广泛的损失和破坏。为了帮助减少损失,需要一个及时提供信息的系统。洪水是主要的自然灾害之一,需要一个监测和检测系统。传统的洪水探测系统使用远程传感器,如河流水位和降雨量,向灾害管理专业人员和公众提供信息。有人尝试使用闭路电视摄像机等视觉信息来检测极端洪水事件;然而,它需要人类专家和持续的关注来监控任何变化。在本文中,我们介绍了一种利用深度学习来确定监控摄像机的水位的自动河流水位检测方法。该模型使用单个相机位置达到93%的精度,使用多个相机位置达到83%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信