Ergodic properties of random infinite products of nonexpansive mappings

S. Reich, A. Zaslavski
{"title":"Ergodic properties of random infinite products of nonexpansive mappings","authors":"S. Reich, A. Zaslavski","doi":"10.7862/RF.2017.10","DOIUrl":null,"url":null,"abstract":": In this paper we are concerned with the asymptotic behavior of random (unrestricted) infinite products of nonexpansive self-mappings of closed and convex subsets of a complete hyperbolic space. In contrast with our previous work in this direction, we no longer assume that these subsets are bounded. We first establish two theorems regarding the stability of the random weak ergodic property and then prove a related generic result. These results also extend our recent investigations regarding nonrandom infinite products.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/RF.2017.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

: In this paper we are concerned with the asymptotic behavior of random (unrestricted) infinite products of nonexpansive self-mappings of closed and convex subsets of a complete hyperbolic space. In contrast with our previous work in this direction, we no longer assume that these subsets are bounded. We first establish two theorems regarding the stability of the random weak ergodic property and then prove a related generic result. These results also extend our recent investigations regarding nonrandom infinite products.
非扩张映射的随机无限积的遍历性质
本文研究了完全双曲空间的闭子集和凸子集的非扩张自映射的随机(无限制)无穷积的渐近性。与我们之前在这个方向上的工作相反,我们不再假设这些子集是有界的。首先建立了关于随机弱遍历性质稳定性的两个定理,然后证明了一个相关的一般结果。这些结果也扩展了我们最近关于非随机无穷积的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信