{"title":"Ergodic properties of random infinite products of nonexpansive mappings","authors":"S. Reich, A. Zaslavski","doi":"10.7862/RF.2017.10","DOIUrl":null,"url":null,"abstract":": In this paper we are concerned with the asymptotic behavior of random (unrestricted) infinite products of nonexpansive self-mappings of closed and convex subsets of a complete hyperbolic space. In contrast with our previous work in this direction, we no longer assume that these subsets are bounded. We first establish two theorems regarding the stability of the random weak ergodic property and then prove a related generic result. These results also extend our recent investigations regarding nonrandom infinite products.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/RF.2017.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
: In this paper we are concerned with the asymptotic behavior of random (unrestricted) infinite products of nonexpansive self-mappings of closed and convex subsets of a complete hyperbolic space. In contrast with our previous work in this direction, we no longer assume that these subsets are bounded. We first establish two theorems regarding the stability of the random weak ergodic property and then prove a related generic result. These results also extend our recent investigations regarding nonrandom infinite products.