Voice-based Image Captioning using Inception-V3 Transfer Learning Model

Vaibhav Thalanki, R. N. Akshayaa, R. Krithika, R. Jothi
{"title":"Voice-based Image Captioning using Inception-V3 Transfer Learning Model","authors":"Vaibhav Thalanki, R. N. Akshayaa, R. Krithika, R. Jothi","doi":"10.1109/ICOEI56765.2023.10125754","DOIUrl":null,"url":null,"abstract":"This study presents a deep learning model to serve as an image caption generator that generates descriptions or captions of the images in proper natural language sentences, which will then be read aloud by the text to speech translator. With the growing demand for tools like this in various fields such as assisting the visually impaired, self-driving vehicles, and virtual assistants. Hence, the development of such systems has become increasingly important. The proposed system utilizes a combination of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) with attention models, specifically by using the Inception V3 model and a variant of RNN called Gated Recurrent Units (GRU).","PeriodicalId":168942,"journal":{"name":"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI56765.2023.10125754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a deep learning model to serve as an image caption generator that generates descriptions or captions of the images in proper natural language sentences, which will then be read aloud by the text to speech translator. With the growing demand for tools like this in various fields such as assisting the visually impaired, self-driving vehicles, and virtual assistants. Hence, the development of such systems has become increasingly important. The proposed system utilizes a combination of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) with attention models, specifically by using the Inception V3 model and a variant of RNN called Gated Recurrent Units (GRU).
使用Inception-V3迁移学习模型的基于语音的图像字幕
本研究提出了一个深度学习模型,作为图像标题生成器,以适当的自然语言句子生成图像的描述或标题,然后由文本大声朗读给语音翻译人员。随着各种领域对这类工具的需求不断增长,比如帮助视障人士、自动驾驶汽车和虚拟助手。因此,这种系统的发展变得越来越重要。该系统结合了卷积神经网络(CNN)和递归神经网络(RNN)和注意力模型,特别是使用了Inception V3模型和RNN的一种变体,称为门控递归单元(GRU)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信