Dataset Diversity: Measuring and Mitigating Geographical Bias in Image Search and Retrieval

Abhishek Mandal, Susan Leavy, S. Little
{"title":"Dataset Diversity: Measuring and Mitigating Geographical Bias in Image Search and Retrieval","authors":"Abhishek Mandal, Susan Leavy, S. Little","doi":"10.1145/3475731.3484956","DOIUrl":null,"url":null,"abstract":"Many popular visual datasets used to train deep neural networksfor computer vision applications, especially for facial analytics,are created by retrieving images from the internet. Search enginesare often used to perform this task. However, due to localisationand personalisation of search results by the search engines alongwith the image indexing method used by these search engines, theresultant images overrepresent the demographics of the region fromwhere they were queried from. As most of the visual datasets arecreated in western countries, they tend to have a western centricbias and when these datasets are used to train deep neural networks,they tend to inherit these biases. Researchers studying the issue ofbias in visual datasets have focused on the racial aspect of thesebiases. We approach this from a geographical perspective. In thispaper, we 1) study how linguistic variations in search queries andgeographical variations in the querying region affect the social andcultural aspects of retrieved images focusing on facial analytics, 2)explore how geographical bias in image search and retrieval cancause racial, cultural and stereotypical bias in visual datasets and3) propose methods to mitigate such biases.","PeriodicalId":355632,"journal":{"name":"Proceedings of the 1st International Workshop on Trustworthy AI for Multimedia Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Trustworthy AI for Multimedia Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3475731.3484956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Many popular visual datasets used to train deep neural networksfor computer vision applications, especially for facial analytics,are created by retrieving images from the internet. Search enginesare often used to perform this task. However, due to localisationand personalisation of search results by the search engines alongwith the image indexing method used by these search engines, theresultant images overrepresent the demographics of the region fromwhere they were queried from. As most of the visual datasets arecreated in western countries, they tend to have a western centricbias and when these datasets are used to train deep neural networks,they tend to inherit these biases. Researchers studying the issue ofbias in visual datasets have focused on the racial aspect of thesebiases. We approach this from a geographical perspective. In thispaper, we 1) study how linguistic variations in search queries andgeographical variations in the querying region affect the social andcultural aspects of retrieved images focusing on facial analytics, 2)explore how geographical bias in image search and retrieval cancause racial, cultural and stereotypical bias in visual datasets and3) propose methods to mitigate such biases.
数据集多样性:测量和减轻图像搜索和检索中的地理偏差
许多流行的用于训练计算机视觉应用的深度神经网络的视觉数据集,特别是用于面部分析的视觉数据集,都是通过从互联网上检索图像创建的。搜索引擎经常被用来执行这项任务。然而,由于搜索引擎对搜索结果的本地化和个性化,以及这些搜索引擎使用的图像索引方法,结果图像过度代表了他们被查询的地区的人口统计数据。由于大多数视觉数据集是在西方国家创建的,它们往往具有西方中心偏见,当这些数据集用于训练深度神经网络时,它们往往会继承这些偏见。研究视觉数据集偏见问题的研究人员一直关注这些偏见的种族方面。我们从地理的角度来研究这个问题。在本文中,我们1)研究了搜索查询中的语言变化和查询区域的地理变化如何影响以面部分析为重点的检索图像的社会和文化方面;2)探讨了图像搜索和检索中的地理偏见如何导致视觉数据集中的种族、文化和刻板印象偏见;3)提出了减轻这种偏见的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信