Research on the Methods of Chinese Text Classification using Bayes and Language Model

Tao Yan, Guangyong Gao
{"title":"Research on the Methods of Chinese Text Classification using Bayes and Language Model","authors":"Tao Yan, Guangyong Gao","doi":"10.1109/CCPR.2008.88","DOIUrl":null,"url":null,"abstract":"With the increase of information on Internet, how to gain useful information fleetly and effectively becomes an important task, and information automatic classification emerges as the times require. Bayes has been used in many fields as one of the classification methods. This paper applies the classification model which Bayes classifier combines with language model to Chinese text classification. On the Chinese Corpus of FuDan University, our experiments show that the improved classifiers which used the four smoothing methods have better performance than naive Bayes classifier model. In particular with the method Jelinek-Mercer of adopting modified smoothing scale, the performance of classifier improves a lot.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the increase of information on Internet, how to gain useful information fleetly and effectively becomes an important task, and information automatic classification emerges as the times require. Bayes has been used in many fields as one of the classification methods. This paper applies the classification model which Bayes classifier combines with language model to Chinese text classification. On the Chinese Corpus of FuDan University, our experiments show that the improved classifiers which used the four smoothing methods have better performance than naive Bayes classifier model. In particular with the method Jelinek-Mercer of adopting modified smoothing scale, the performance of classifier improves a lot.
基于贝叶斯和语言模型的中文文本分类方法研究
随着网络信息量的增加,如何快速有效地获取有用的信息成为一项重要任务,信息自动分类应运而生。贝叶斯作为分类方法之一已被广泛应用于许多领域。本文将贝叶斯分类器与语言模型相结合的分类模型应用到中文文本分类中。在复旦大学中文语料库上,我们的实验表明,使用这四种平滑方法的改进分类器比朴素贝叶斯分类器模型具有更好的性能。特别是采用修正平滑尺度的Jelinek-Mercer方法,大大提高了分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信