Near-Brain Computation: Embedding P300-based BCIs at EEG headset level

G. Mezzina, Martin Walchshofer, C. Guger, D. Venuto
{"title":"Near-Brain Computation: Embedding P300-based BCIs at EEG headset level","authors":"G. Mezzina, Martin Walchshofer, C. Guger, D. Venuto","doi":"10.1109/IWASI58316.2023.10164428","DOIUrl":null,"url":null,"abstract":"This paper presents a first-of-a-kind BCI framework overcoming technological and environmental factors that limit the adaptability of EEG-based BCIs to everyday life contexts. Some examples of these limitations include discomfort associated with the use of EEG headsets that require conductive gel, the lack of “plug and play” solutions, and noisy environments. In this context, the proposed BCI framework aims to realize an integrated system, currently running on the STM32L4 embedded platform (oriented towards headset-level implementation), capable of: (i) analyzing data from 8 dry EEG electrodes, (ii) detecting and correcting spatially uncorrelated deflections in EEG channels caused by external disturbances, and (iii) identifying and fine-tuning hyperparameters of a Fully Connected Neural Network with a user data-driven approach. The implemented embedded system, applied for a feasibility study to a 12-choice P300 speller matrix, demonstrated matrix element recognition accuracy exceeding 80% after only 4 runs, while maintaining an information transfer rate (ITR) of approximately 16 commands per minute under non-optimal usage conditions.","PeriodicalId":261827,"journal":{"name":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI58316.2023.10164428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a first-of-a-kind BCI framework overcoming technological and environmental factors that limit the adaptability of EEG-based BCIs to everyday life contexts. Some examples of these limitations include discomfort associated with the use of EEG headsets that require conductive gel, the lack of “plug and play” solutions, and noisy environments. In this context, the proposed BCI framework aims to realize an integrated system, currently running on the STM32L4 embedded platform (oriented towards headset-level implementation), capable of: (i) analyzing data from 8 dry EEG electrodes, (ii) detecting and correcting spatially uncorrelated deflections in EEG channels caused by external disturbances, and (iii) identifying and fine-tuning hyperparameters of a Fully Connected Neural Network with a user data-driven approach. The implemented embedded system, applied for a feasibility study to a 12-choice P300 speller matrix, demonstrated matrix element recognition accuracy exceeding 80% after only 4 runs, while maintaining an information transfer rate (ITR) of approximately 16 commands per minute under non-optimal usage conditions.
近脑计算:在脑电图耳机水平嵌入基于p300的脑机接口
本文提出了一种首创的脑机接口框架,克服了限制基于脑电图的脑机接口适应日常生活环境的技术和环境因素。这些限制的一些例子包括与使用需要导电凝胶的EEG耳机相关的不适,缺乏“即插即用”解决方案,以及嘈杂的环境。在此背景下,所提出的BCI框架旨在实现一个集成系统,目前运行在STM32L4嵌入式平台上(面向头戴式实现),能够:(i)分析来自8个干脑电图电极的数据,(ii)检测和纠正由外部干扰引起的脑电图通道中空间不相关的偏转,以及(iii)通过用户数据驱动的方法识别和微调全连接神经网络的超参数。所实现的嵌入式系统,应用于12个选择的P300拼写矩阵的可行性研究,显示仅在4次运行后,矩阵元素识别准确率超过80%,同时在非最佳使用条件下保持每分钟约16个命令的信息传输速率(ITR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信