Computation with hyperexponential functions

Ziming Li, Dabin Zheng
{"title":"Computation with hyperexponential functions","authors":"Ziming Li, Dabin Zheng","doi":"10.1145/1113439.1113446","DOIUrl":null,"url":null,"abstract":"A multivariate hyperexponential function is a function whose\"logarithmic derivatives\" are rational. Examples ofhyperexponential functions include rational functions, exponentialfunctions, and hypergeometric terms. Hyperexponential functionsplay an important role in the handling of analytic andcombinatorial objects. We present a few algorithms applicable tothe manipulation of hyperexponential functions in an uniformway.\nLet <i>F</i> be a field of characteristic zero, onwhich derivation operators&delta;<inf>1</inf>,...,&delta;<inf>&ell;</inf>and difference operators (automorphisms)&sigma;<inf>&ell;+1</inf>,...,&sigma;<inf>m</inf> act. Let <i>E</i>be an <i>F</i>-algebra. Assume that the&delta;<inf><i>i</i></inf> for 1&le; <i>i</i> &le; &ell; and&sigma;<inf><i>j</i></inf> for&ell; + 1 &le; <i>m</i> can be extended to<i>E</i> as derivation and difference operators.Moreover, these operators commute with each other on<i>E.</i> A hyperexponential element of<i>E</i> over <i>F</i> is defined to be anonzero element <i>h</i> &isin;<i>E</i> such that\n&delta;<inf>1</inf>(<i>h</i>) =<i>r</i><inf>1</inf><i>h</i>,...,&delta;<inf>&ell;</inf>(<i>h</i>)=<i>r</i><inf>&ell;</inf><i>h</i>,&sigma;<inf>&ell;+1</inf>(<i>h</i>)=<i>r</i><inf>&ell;+1</inf><i>h</i>,...,&sigma;<inf><i>m</i></inf>(<i>h</i>)=<i>r</i><inf><i>m</i></inf><i>h</i>\nfor some <i>r</i><inf>1</inf>,...,<i>r<inf>m</inf></i> &isin;<i>F</i>. These rational functions are called(rational) certificates for <i>h.</i>","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1113439.1113446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A multivariate hyperexponential function is a function whose"logarithmic derivatives" are rational. Examples ofhyperexponential functions include rational functions, exponentialfunctions, and hypergeometric terms. Hyperexponential functionsplay an important role in the handling of analytic andcombinatorial objects. We present a few algorithms applicable tothe manipulation of hyperexponential functions in an uniformway. Let F be a field of characteristic zero, onwhich derivation operatorsδ1,...,δand difference operators (automorphisms)σℓ+1,...,σm act. Let Ebe an F-algebra. Assume that theδi for 1≤ i ≤ ℓ andσj forℓ + 1 ≤ m can be extended toE as derivation and difference operators.Moreover, these operators commute with each other onE. A hyperexponential element ofE over F is defined to be anonzero element hE such that δ1(h) =r1h,...,δ(h)=rhℓ+1(h)=rℓ+1h,...,σm(h)=rmh for some r1,...,rmF. These rational functions are called(rational) certificates for h.
超指数函数的计算
多元超指数函数是其“对数导数”是有理的函数。超指数函数的例子包括有理函数、指数函数和超几何项。超指数函数在分析和组合问题中发挥着重要作用。我们提出了几种适用于均匀地处理超指数函数的算法。设F是特征为0的域,导数算子δ1,…,δℓ和差分算子(自同构)σℓ+1,…,σm作用于该域。假设Ebe是f代数。假设i对于1≤我勒;l形的;和σ;j forℓ+ 1 ≤m可以扩展为微分算子和差分算子。此外,这些操作符之间相互交换为1。E / F的一个超指数元素被定义为非零元素h ∈E,使得δ1(h) =r1h,…,δℓ(h)=rℓh,σℓ+1(h)=rℓ+1h,…,σm(h)=rmh,对于某些r1,…rm isin; F。这些有理函数被称为h的(有理)证书。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信