Polynomials over ℤ2n and their applications in symmetric cryptography

S. M. Dehnavi, M. R. M. Shamsabad
{"title":"Polynomials over ℤ2n and their applications in symmetric cryptography","authors":"S. M. Dehnavi, M. R. M. Shamsabad","doi":"10.1109/ISCISC.2018.8546901","DOIUrl":null,"url":null,"abstract":"Components which are constructed via the application of basic instructions of modern processors are common in symmetric ciphers targeting software applications; among them are polynomials over $\\mathbb{Z}_{2^{n}}$, which fit n-bit processors. For instance, the AES finalist RC6 uses a quadratic polynomial over $\\mathbb{Z}_{2^{32}}$. In this paper, after some mathematical examination, we give the explicit formula for the inverse of RC6-like polynomials over $\\mathbb{Z}_{2^{n}}$ and propose some degree-one polynomials as well as some self-invertible (involutive) quadratic polynomials with better cryptographic properties, instead of them, for the use in modern software-oriented symmetric ciphers. Then, we provide a new nonlinear generator with provable period, which could be used in stream ciphers and pseudo-random number generators.","PeriodicalId":318403,"journal":{"name":"2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCISC.2018.8546901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Components which are constructed via the application of basic instructions of modern processors are common in symmetric ciphers targeting software applications; among them are polynomials over $\mathbb{Z}_{2^{n}}$, which fit n-bit processors. For instance, the AES finalist RC6 uses a quadratic polynomial over $\mathbb{Z}_{2^{32}}$. In this paper, after some mathematical examination, we give the explicit formula for the inverse of RC6-like polynomials over $\mathbb{Z}_{2^{n}}$ and propose some degree-one polynomials as well as some self-invertible (involutive) quadratic polynomials with better cryptographic properties, instead of them, for the use in modern software-oriented symmetric ciphers. Then, we provide a new nonlinear generator with provable period, which could be used in stream ciphers and pseudo-random number generators.
素数上的多项式及其在对称密码学中的应用
通过应用现代处理器的基本指令构建的组件在针对软件应用的对称密码中很常见;其中有$\mathbb{Z}_{2^{n}}$上的多项式,适合n位处理器。例如,AES决赛器RC6使用$\mathbb{Z}_{2^{32}}$上的二次多项式。本文通过数学检验,给出了$\mathbb{Z}_{2} {n}}$上类rc6多项式逆的显式公式,并提出了一些具有较好密码学性质的一阶多项式和自可逆(对合)二次多项式,以代替它们用于现代面向软件的对称密码。然后,我们提出了一种新的具有可证明周期的非线性发生器,可用于流密码和伪随机数发生器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信