High resolution model based 2-D spectrum estimation

R. R. Hansen, R. Chellappa
{"title":"High resolution model based 2-D spectrum estimation","authors":"R. R. Hansen, R. Chellappa","doi":"10.1109/ICASSP.1988.196688","DOIUrl":null,"url":null,"abstract":"A noncausal autoregressive (NCAR) plus additive noise model is presented for model-based spectrum estimation of two-dimensional sinusoidal signals in noise. The maximum-likelihood (ML) procedure provides consistent and efficient parameter estimates for NCAR models with bilateral neighbor sets, and these properties carry over to the maximum-likelihood estimates of parameters for Gaussian-NCAR-plus-noise models. By assuming a toroidal lattice the complexity of the ML equation is significantly reduced with little impact on the observed accuracy of the estimated spectra. Initial conditions for starting the ML computation are proposed. Experimental results are presented for various signal-to-noise ratios.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.196688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A noncausal autoregressive (NCAR) plus additive noise model is presented for model-based spectrum estimation of two-dimensional sinusoidal signals in noise. The maximum-likelihood (ML) procedure provides consistent and efficient parameter estimates for NCAR models with bilateral neighbor sets, and these properties carry over to the maximum-likelihood estimates of parameters for Gaussian-NCAR-plus-noise models. By assuming a toroidal lattice the complexity of the ML equation is significantly reduced with little impact on the observed accuracy of the estimated spectra. Initial conditions for starting the ML computation are proposed. Experimental results are presented for various signal-to-noise ratios.<>
基于二维光谱估计的高分辨率模型
提出了一种非因果自回归(NCAR)加可加噪声模型,用于噪声条件下二维正弦信号的基于模型的频谱估计。最大似然(ML)过程为具有双边邻居集的NCAR模型提供了一致和有效的参数估计,并且这些特性延续到高斯-NCAR-加噪声模型的参数的最大似然估计。通过假设一个环面晶格,ML方程的复杂性大大降低,对估计光谱的观测精度影响很小。提出了开始机器学习计算的初始条件。给出了不同信噪比下的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信