Review of deep learning network

Liming Chen, Bin Xie, YingChun Chen
{"title":"Review of deep learning network","authors":"Liming Chen, Bin Xie, YingChun Chen","doi":"10.1145/3507548.3507601","DOIUrl":null,"url":null,"abstract":"∗Deep learning is a technology that uses the hierarchical structure of neural network to learn features. It allows computer models with multiple processing layers to learn and represent data like the brain’s perception and understanding of multimodal information, so as to implicitly capture complex large-scale data. The whole system of deep learning network forms a hierarchical and powerful feature representation structure, which enables it to analyze and extract useful knowledge from a large amount of data. This paper mainly introduces the development and application of supervised convolution neural network, unsupervised convolution neural network and generative countermeasure network, and analyzes the research status and challenges of deep learning network. Through the review and introduction of important papers on deep learning network, it provides researchers with accessible scientific research materials.","PeriodicalId":414908,"journal":{"name":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507548.3507601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

∗Deep learning is a technology that uses the hierarchical structure of neural network to learn features. It allows computer models with multiple processing layers to learn and represent data like the brain’s perception and understanding of multimodal information, so as to implicitly capture complex large-scale data. The whole system of deep learning network forms a hierarchical and powerful feature representation structure, which enables it to analyze and extract useful knowledge from a large amount of data. This paper mainly introduces the development and application of supervised convolution neural network, unsupervised convolution neural network and generative countermeasure network, and analyzes the research status and challenges of deep learning network. Through the review and introduction of important papers on deep learning network, it provides researchers with accessible scientific research materials.
深度学习网络综述
*深度学习是一种利用神经网络的层次结构来学习特征的技术。它允许具有多个处理层的计算机模型像大脑对多模态信息的感知和理解一样学习和表示数据,从而隐式捕获复杂的大规模数据。整个深度学习网络系统形成了层次化、功能强大的特征表示结构,使其能够从大量数据中分析和提取有用的知识。本文主要介绍了有监督卷积神经网络、无监督卷积神经网络和生成对策网络的发展和应用,分析了深度学习网络的研究现状和面临的挑战。通过对深度学习网络相关重要论文的综述和介绍,为研究人员提供可获取的科研资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信