Pose estimation for monocular image object using convolution neural network

Hangyu Li, Han Wu, Zhilong Zhang, Chuwei Li
{"title":"Pose estimation for monocular image object using convolution neural network","authors":"Hangyu Li, Han Wu, Zhilong Zhang, Chuwei Li","doi":"10.1109/ISCEIC53685.2021.00062","DOIUrl":null,"url":null,"abstract":"Obtaining the accurate position and attitude of the object is the key to realize rendezvous and docking, on-orbit maintenance and other related tasks of space spacecraft. However, for non-cooperative objects, they lack prearranged cooperation sign, which would make it much more difficult to estimate their pose. Therefore, this paper attempts to use the powerful feature learning ability of neural network to establish the mapping relationship between the object in image and its current pose, then regresses the pose parameters of the object from a monocular image. Finally, we tested and verified the network on the public satellite dataset called Speed. The results showed that the translation error was 0.1237 and the rotation error was 0.1335.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"SPEC Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining the accurate position and attitude of the object is the key to realize rendezvous and docking, on-orbit maintenance and other related tasks of space spacecraft. However, for non-cooperative objects, they lack prearranged cooperation sign, which would make it much more difficult to estimate their pose. Therefore, this paper attempts to use the powerful feature learning ability of neural network to establish the mapping relationship between the object in image and its current pose, then regresses the pose parameters of the object from a monocular image. Finally, we tested and verified the network on the public satellite dataset called Speed. The results showed that the translation error was 0.1237 and the rotation error was 0.1335.
基于卷积神经网络的单眼图像目标位姿估计
准确获取目标的位置和姿态是实现航天器交会对接、在轨维护等相关任务的关键。然而,对于非合作对象,他们缺乏预先安排的合作符号,这将使他们的姿态更难估计。因此,本文试图利用神经网络强大的特征学习能力,建立图像中目标与其当前姿态之间的映射关系,然后从单眼图像中回归目标的姿态参数。最后,我们在名为Speed的公共卫星数据集上对网络进行了测试和验证。结果表明,平移误差为0.1237,旋转误差为0.1335。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信