End2End Semantic Segmentation for 3D Indoor Scenes

Na Zhao
{"title":"End2End Semantic Segmentation for 3D Indoor Scenes","authors":"Na Zhao","doi":"10.1145/3240508.3243933","DOIUrl":null,"url":null,"abstract":"This research is concerned with semantic segmentation of 3D point clouds arising from videos of 3D indoor scenes. It is an important building block of 3D scene understanding and has promising applications such as augmented reality and robotics. Although various deep learning based approaches have been proposed to replicate the success of 2D semantic segmentation in 3D domain, they either result in severe information loss or fail to model the geometric structures well. In this paper, we aim to model the local and global geometric structures of 3D scenes by designing an end-to-end 3D semantic segmentation framework. It captures the local geometries from point-level feature learning and voxel-level aggregation, models the global structures via 3D CNN, and enforces label consistency with high-order CRF. Through preliminary experiments conducted on two indoor datasets, we describe our insights on the proposed approach, and present some directions to be pursued in the future.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3243933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This research is concerned with semantic segmentation of 3D point clouds arising from videos of 3D indoor scenes. It is an important building block of 3D scene understanding and has promising applications such as augmented reality and robotics. Although various deep learning based approaches have been proposed to replicate the success of 2D semantic segmentation in 3D domain, they either result in severe information loss or fail to model the geometric structures well. In this paper, we aim to model the local and global geometric structures of 3D scenes by designing an end-to-end 3D semantic segmentation framework. It captures the local geometries from point-level feature learning and voxel-level aggregation, models the global structures via 3D CNN, and enforces label consistency with high-order CRF. Through preliminary experiments conducted on two indoor datasets, we describe our insights on the proposed approach, and present some directions to be pursued in the future.
三维室内场景的End2End语义分割
本文研究了三维室内场景视频中产生的三维点云的语义分割问题。它是3D场景理解的重要组成部分,在增强现实和机器人等领域有着广阔的应用前景。虽然已经提出了各种基于深度学习的方法来复制3D领域中2D语义分割的成功,但它们要么导致严重的信息丢失,要么不能很好地模拟几何结构。在本文中,我们旨在通过设计一个端到端的3D语义分割框架来建模3D场景的局部和全局几何结构。它从点级特征学习和体素级聚合中捕获局部几何形状,通过3D CNN建模全局结构,并通过高阶CRF强制标签一致性。通过在两个室内数据集上进行的初步实验,我们描述了我们对所提出方法的见解,并提出了未来要追求的一些方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信