Almost Periodic Mild Solutions to a Class of Fractional Delayed Differential Equations

Yongjian Liu, Aimin Liu
{"title":"Almost Periodic Mild Solutions to a Class of Fractional Delayed Differential Equations","authors":"Yongjian Liu, Aimin Liu","doi":"10.1109/IWCFTA.2010.9","DOIUrl":null,"url":null,"abstract":"In this paper, one studies the existence and uniqueness of almost periodic mild solutions to fractional delayed differential equations of the form D_t^\\alpha x(t)=Ax(t)+D_t^{\\alpha-1} f(t,x_t) where 1 < α < 2, A : D(A) \\subset X -- X is a linear densely defined operator of sectional type on a complex Banach space X and f : R \\times X -- X is jointly continuous. Let f(t; x) be almost periodic in t \\in R uniformly for x. Under some additional assumptions on A and f, the existence and uniqueness of a almost periodic mild solution to above equation is obtained by using the Banach fixed-point principle. The obtaining results extent corresponding results in time delay with respect to almost periodic mild solutions for fractional differential equations.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, one studies the existence and uniqueness of almost periodic mild solutions to fractional delayed differential equations of the form D_t^\alpha x(t)=Ax(t)+D_t^{\alpha-1} f(t,x_t) where 1 < α < 2, A : D(A) \subset X -- X is a linear densely defined operator of sectional type on a complex Banach space X and f : R \times X -- X is jointly continuous. Let f(t; x) be almost periodic in t \in R uniformly for x. Under some additional assumptions on A and f, the existence and uniqueness of a almost periodic mild solution to above equation is obtained by using the Banach fixed-point principle. The obtaining results extent corresponding results in time delay with respect to almost periodic mild solutions for fractional differential equations.
一类分数阶时滞微分方程的概周期温和解
本文研究了D_t^\ α x(t)=Ax(t)+D_t^{\ α -1} f(t,x_t)形式的分数阶时滞微分方程概周期缓解的存在唯一性,其中1 < α < 2, A: D(A) \子集x—x是复Banach空间x上的一个分段型线性密定义算子,f: R \乘以x—x是联合连续的。让f (t;在对A和f的一些附加假设下,利用Banach不动点原理,得到了上述方程的概周期温和解的存在唯一性。所得结果推广了分数阶微分方程概周期温和解在时滞上的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信