New data structures for analyzing frequent factors in strings

Manuel Baena-García, Rafael Morales Bueno
{"title":"New data structures for analyzing frequent factors in strings","authors":"Manuel Baena-García, Rafael Morales Bueno","doi":"10.1109/ISDA.2011.6121772","DOIUrl":null,"url":null,"abstract":"Discovering frequent factors from long strings is an important problem in many applications, such as biosequence mining. In classical approaches, the algorithms process a vast database of small strings. However, in this paper we analyze a small database of long strings. The main difference resides in the high number of patterns to analyze. To tackle the problem, we have developed a new algorithm for discovering frequent factors in long strings. This algorithm uses a new data structure to arrange nodes in a trie. A positioning matrix is defined as a new positioning strategy. By using positioning matrices, we can apply advanced prune heuristics in a trie with a minimal computational cost. The positioning matrices let us process strings including Short Tandem Repeats and calculate different interestingness measures efficiently. The algorithm has been successfully used in natural language and biological sequence contexts.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Discovering frequent factors from long strings is an important problem in many applications, such as biosequence mining. In classical approaches, the algorithms process a vast database of small strings. However, in this paper we analyze a small database of long strings. The main difference resides in the high number of patterns to analyze. To tackle the problem, we have developed a new algorithm for discovering frequent factors in long strings. This algorithm uses a new data structure to arrange nodes in a trie. A positioning matrix is defined as a new positioning strategy. By using positioning matrices, we can apply advanced prune heuristics in a trie with a minimal computational cost. The positioning matrices let us process strings including Short Tandem Repeats and calculate different interestingness measures efficiently. The algorithm has been successfully used in natural language and biological sequence contexts.
用于分析字符串中频繁因子的新数据结构
从长串中发现频繁因子是许多应用中的重要问题,例如生物序列挖掘。在经典方法中,算法处理一个由小字符串组成的庞大数据库。然而,在本文中,我们分析了一个小型的长字符串数据库。主要的区别在于需要分析的模式数量很多。为了解决这个问题,我们开发了一种新的算法来发现长字符串中的频繁因子。该算法使用一种新的数据结构来排列节点。将定位矩阵定义为一种新的定位策略。通过使用定位矩阵,我们可以以最小的计算成本在一个尝试中应用高级剪枝启发式算法。定位矩阵可以有效地处理包括短串联重复序列在内的字符串,并计算不同的兴趣度度量。该算法已成功应用于自然语言和生物序列语境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信