Comparison of Runge-Kutta Algorithms and Symplectic Algorithms

Ming Zou, Liming Mei
{"title":"Comparison of Runge-Kutta Algorithms and Symplectic Algorithms","authors":"Ming Zou, Liming Mei","doi":"10.1109/ICCIS.2012.106","DOIUrl":null,"url":null,"abstract":"The classical fourth-order Runge-Katla integrator and the third-order force gradient symplectic integrator are used to solve the two-dimensional H'enon-Heiles system respectively. Numerical results, including the relative energy error, Poincare section, the largest Lyapunov exponent and Fast Lyapunov Indicator, are compared in detail. It is found that the Runge-Katla algorithm does not conserve the energy of the system, but the symplectic one does. On the other hand, the former method gives some spurious descriptions of the dynamics, while the latter one does not.","PeriodicalId":269967,"journal":{"name":"2012 Fourth International Conference on Computational and Information Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2012.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The classical fourth-order Runge-Katla integrator and the third-order force gradient symplectic integrator are used to solve the two-dimensional H'enon-Heiles system respectively. Numerical results, including the relative energy error, Poincare section, the largest Lyapunov exponent and Fast Lyapunov Indicator, are compared in detail. It is found that the Runge-Katla algorithm does not conserve the energy of the system, but the symplectic one does. On the other hand, the former method gives some spurious descriptions of the dynamics, while the latter one does not.
龙格-库塔算法与辛算法的比较
分别采用经典的四阶龙格-卡特拉积分器和三阶力梯度辛积分器求解二维H'enon-Heiles系统。对相对能量误差、庞加莱剖面、最大Lyapunov指数和快速Lyapunov指标等数值结果进行了比较。发现龙格-卡特拉算法不守恒系统能量,而辛算法守恒系统能量。另一方面,前一种方法给出了一些虚假的动力学描述,而后一种方法没有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信