Efficient Phase-Functioned Real-time Character Control in Mobile Games: A TVM Enabled Approach

Haidong Lan, Wenxi Zhu, Du Wu, Qian Qiu, Honglin Zhu, Jingjing Zhao, Xinghui Fu, Liu Wei, Jintao Meng, Minwen Deng
{"title":"Efficient Phase-Functioned Real-time Character Control in Mobile Games: A TVM Enabled Approach","authors":"Haidong Lan, Wenxi Zhu, Du Wu, Qian Qiu, Honglin Zhu, Jingjing Zhao, Xinghui Fu, Liu Wei, Jintao Meng, Minwen Deng","doi":"10.1145/3545008.3545095","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a highly efficient computing method for game character control with phase-functioned neural networks (PFNN). The primary challenge to accelerate PFNN on mobile platforms is that PFNN dynamically produces weight matrices with an argument, phase, which is individual to each game character. Therefore existing libraries that generally assume frozen weight matrices are inefficient to accelerate PFNN. The situation becomes even worse when multiple characters are present. To address the challenges, we reformulate the equations and leverage the deep learning compiler stack TVM to build a cross-platform, high-performance implementation. Evaluations reveal that our solutions deliver close-to-peak performance on various platforms, from high-performance servers to energy-efficient mobile platforms. This work is publicly available at https://github.com/turbo0628/pfnn_tvm.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a highly efficient computing method for game character control with phase-functioned neural networks (PFNN). The primary challenge to accelerate PFNN on mobile platforms is that PFNN dynamically produces weight matrices with an argument, phase, which is individual to each game character. Therefore existing libraries that generally assume frozen weight matrices are inefficient to accelerate PFNN. The situation becomes even worse when multiple characters are present. To address the challenges, we reformulate the equations and leverage the deep learning compiler stack TVM to build a cross-platform, high-performance implementation. Evaluations reveal that our solutions deliver close-to-peak performance on various platforms, from high-performance servers to energy-efficient mobile platforms. This work is publicly available at https://github.com/turbo0628/pfnn_tvm.
手机游戏中的有效相位函数实时角色控制:TVM支持方法
本文提出了一种基于相函数神经网络(PFNN)的游戏角色控制的高效计算方法。在移动平台上加速PFNN的主要挑战是PFNN动态生成带有参数phase的权重矩阵,该参数对于每个游戏角色都是独立的。因此,通常假设冻结权矩阵的现有库对于加速PFNN是低效的。当多个角色同时出现时,情况会变得更糟。为了解决这些挑战,我们重新制定了这些方程,并利用深度学习编译器堆栈TVM来构建一个跨平台、高性能的实现。评估显示,我们的解决方案在各种平台上提供接近峰值的性能,从高性能服务器到节能移动平台。这项工作可以在https://github.com/turbo0628/pfnn_tvm上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信