Deep Learning for Joint Image Reconstruction and Segmentation for SAR

Samia Kazemi, B. Yazıcı
{"title":"Deep Learning for Joint Image Reconstruction and Segmentation for SAR","authors":"Samia Kazemi, B. Yazıcı","doi":"10.1109/RADAR42522.2020.9114796","DOIUrl":null,"url":null,"abstract":"We present an approach for joint image reconstruction and foreground-background separation for synthetic aperture radar (SAR) using deep learning (DL). Network structure of the deep model is derived by unwrapping the stages of an iterative algorithm that solves an underlying optimization problem. This leads to physical model based deep network with learned network parameters having meaningful interpretation. Combined image reconstruction and segmentation approach allows joint optimization of both tasks that enhances performance and prevent inadvertent loss of useful information. Numerical results are included to show feasibility of the proposed approach.","PeriodicalId":125006,"journal":{"name":"2020 IEEE International Radar Conference (RADAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Radar Conference (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR42522.2020.9114796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present an approach for joint image reconstruction and foreground-background separation for synthetic aperture radar (SAR) using deep learning (DL). Network structure of the deep model is derived by unwrapping the stages of an iterative algorithm that solves an underlying optimization problem. This leads to physical model based deep network with learned network parameters having meaningful interpretation. Combined image reconstruction and segmentation approach allows joint optimization of both tasks that enhances performance and prevent inadvertent loss of useful information. Numerical results are included to show feasibility of the proposed approach.
基于深度学习的SAR联合图像重建与分割
提出了一种基于深度学习的合成孔径雷达(SAR)联合图像重建和前景背景分离方法。深度模型的网络结构是通过对求解底层优化问题的迭代算法的各个阶段展开而得到的。这使得基于物理模型的深度网络对学习到的网络参数有了有意义的解释。结合图像重建和分割方法允许联合优化这两个任务,提高性能和防止有用信息的无意丢失。数值结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信