{"title":"A Bayesian sensitivity analysis of the effect of different random effects distributions on growth curve models","authors":"M. Ganjali, T. Baghfalaki, A. Fagbamigbe","doi":"10.16929/as/2020.2387.164","DOIUrl":null,"url":null,"abstract":"Growth curve data consist of repeated measurements of a continuous growth process of human, animal, plant, microbial or bacterial genetic data over time in a population of individuals. A classical approach for analysing such data is the use of non-linear mixed effects models under normality assumption for the responses. But, sometimes the underlying population that the sample is extracted from is an abnormal population or includes some homogeneous sub-samples. So, detection of original properties of the population is an important scientific question of interest. In this paper, a sensitivity analysis of using different parametric and non-parametric distributions for the random effects on the results of applying non-linear mixed models is proposed for emphasizing the possible heterogeneity in the population. A Bayesian MCMC procedure is developed for parameter estimation and inference is performed via a hierarchical Bayesian framework. The methodology is illustrated using a real data set on study of influence of menarche on changes in body fat accretion.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2020.2387.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Growth curve data consist of repeated measurements of a continuous growth process of human, animal, plant, microbial or bacterial genetic data over time in a population of individuals. A classical approach for analysing such data is the use of non-linear mixed effects models under normality assumption for the responses. But, sometimes the underlying population that the sample is extracted from is an abnormal population or includes some homogeneous sub-samples. So, detection of original properties of the population is an important scientific question of interest. In this paper, a sensitivity analysis of using different parametric and non-parametric distributions for the random effects on the results of applying non-linear mixed models is proposed for emphasizing the possible heterogeneity in the population. A Bayesian MCMC procedure is developed for parameter estimation and inference is performed via a hierarchical Bayesian framework. The methodology is illustrated using a real data set on study of influence of menarche on changes in body fat accretion.