A Bayesian sensitivity analysis of the effect of different random effects distributions on growth curve models

M. Ganjali, T. Baghfalaki, A. Fagbamigbe
{"title":"A Bayesian sensitivity analysis of the effect of different random effects distributions on growth curve models","authors":"M. Ganjali, T. Baghfalaki, A. Fagbamigbe","doi":"10.16929/as/2020.2387.164","DOIUrl":null,"url":null,"abstract":"Growth curve data consist of repeated measurements of a continuous growth process of human, animal, plant, microbial or bacterial genetic data over time in a population of individuals. A classical approach for analysing such data is the use of non-linear mixed effects models under normality assumption for the responses. But, sometimes the underlying population that the sample is extracted from is an abnormal population or includes some homogeneous sub-samples. So, detection of original properties of the population is an important scientific question of interest. In this paper, a sensitivity analysis of using different parametric and non-parametric distributions for the random effects on the results of applying non-linear mixed models is proposed for emphasizing the possible heterogeneity in the population. A Bayesian MCMC procedure is developed for parameter estimation and inference is performed via a hierarchical Bayesian framework. The methodology is illustrated using a real data set on study of influence of menarche on changes in body fat accretion.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2020.2387.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Growth curve data consist of repeated measurements of a continuous growth process of human, animal, plant, microbial or bacterial genetic data over time in a population of individuals. A classical approach for analysing such data is the use of non-linear mixed effects models under normality assumption for the responses. But, sometimes the underlying population that the sample is extracted from is an abnormal population or includes some homogeneous sub-samples. So, detection of original properties of the population is an important scientific question of interest. In this paper, a sensitivity analysis of using different parametric and non-parametric distributions for the random effects on the results of applying non-linear mixed models is proposed for emphasizing the possible heterogeneity in the population. A Bayesian MCMC procedure is developed for parameter estimation and inference is performed via a hierarchical Bayesian framework. The methodology is illustrated using a real data set on study of influence of menarche on changes in body fat accretion.
不同随机效应分布对生长曲线模型影响的贝叶斯敏感性分析
生长曲线数据是对一个个体群体中人类、动物、植物、微生物或细菌基因数据在一段时间内的连续生长过程的重复测量。分析此类数据的经典方法是在响应的正态性假设下使用非线性混合效应模型。但是,有时抽取样本的潜在总体是一个异常总体或包含一些同质子样本。因此,检测种群的原始属性是一个重要的科学问题。本文提出了使用不同参数和非参数分布对应用非线性混合模型的结果的随机效应进行敏感性分析,以强调总体中可能存在的异质性。开发了一个用于参数估计的贝叶斯MCMC程序,并通过分层贝叶斯框架进行推理。该方法是用一个真实的数据集研究初潮对体脂增加变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信