Center of Inertia Frequency Estimation Using Deep Learning Algorithm

E. Nukić, T. Konjic
{"title":"Center of Inertia Frequency Estimation Using Deep Learning Algorithm","authors":"E. Nukić, T. Konjic","doi":"10.2478/bhee-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract Increasing the number of generation units connected to the grid via power electronic devices potentially implies negative impacts on the power system frequency stability and, depending on the power system inertia value, implies the necessary contribution of wind power plants to inertial response of the system. An alternative approach to the active power control of wind power plants, without the impact of local frequency deviation on the output power, is the application of a control strategies based on the center of inertia frequency. Since control schemes based on the input variable of the center of inertia frequency require a satisfactory level of signal transmission capacity in real time and the advanced telecommunication infrastructure of the power system, the paper considers an alternative approach to estimate the input signal value. According to the developed long short-term memory recurrent neural network, paper presents the idea of center of inertia frequency estimation by monitoring the speed of several generators in the system and passing the sequence of input data for a certain time interval, after the occurrence of imbalance, to the artificial intelligence module.","PeriodicalId":236883,"journal":{"name":"B&H Electrical Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"B&H Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bhee-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Increasing the number of generation units connected to the grid via power electronic devices potentially implies negative impacts on the power system frequency stability and, depending on the power system inertia value, implies the necessary contribution of wind power plants to inertial response of the system. An alternative approach to the active power control of wind power plants, without the impact of local frequency deviation on the output power, is the application of a control strategies based on the center of inertia frequency. Since control schemes based on the input variable of the center of inertia frequency require a satisfactory level of signal transmission capacity in real time and the advanced telecommunication infrastructure of the power system, the paper considers an alternative approach to estimate the input signal value. According to the developed long short-term memory recurrent neural network, paper presents the idea of center of inertia frequency estimation by monitoring the speed of several generators in the system and passing the sequence of input data for a certain time interval, after the occurrence of imbalance, to the artificial intelligence module.
基于深度学习算法的惯性中心频率估计
通过电力电子设备接入电网的发电机组数量的增加可能会对电力系统的频率稳定性产生负面影响,并且根据电力系统的惯性值,意味着风力发电厂对系统惯性响应的必要贡献。在不受局部频率偏差影响的情况下,风力发电厂有功功率控制的另一种方法是采用基于惯性中心频率的控制策略。由于基于惯性中心频率这一输入变量的控制方案对信号的实时传输能力和电力系统先进的通信基础设施有较高的要求,本文考虑了一种估计输入信号值的替代方法。根据已发展的长短期记忆递归神经网络,提出了通过监测系统中多个发电机的转速,并在不平衡发生后将一定时间间隔的输入数据序列传递给人工智能模块进行惯性中心频率估计的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信