Controlling the Production of Neuro-symbolic Rules

I. Hatzilygeroudis, J. Prentzas
{"title":"Controlling the Production of Neuro-symbolic Rules","authors":"I. Hatzilygeroudis, J. Prentzas","doi":"10.1109/ICTAI.2012.148","DOIUrl":null,"url":null,"abstract":"Neurules are a kind of integrated rules integrating neurocomputing and production rules. Neurules can be produced from existing empirical data, through the neurules production algorithm (NPA). In this paper, we present (a) an extension to NPA regarding presentation of neurules, so that they are more natural and more informative, and (b) an experimental comparison of various alternative strategies we can use at some points of NPA targeting at producing as less neurules as possible. Results of (b) show no clear winner for all cases in terms of the gain in number of neurules compared to the computational cost.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neurules are a kind of integrated rules integrating neurocomputing and production rules. Neurules can be produced from existing empirical data, through the neurules production algorithm (NPA). In this paper, we present (a) an extension to NPA regarding presentation of neurules, so that they are more natural and more informative, and (b) an experimental comparison of various alternative strategies we can use at some points of NPA targeting at producing as less neurules as possible. Results of (b) show no clear winner for all cases in terms of the gain in number of neurules compared to the computational cost.
控制神经符号规则的产生
神经规则是一种集神经计算和生产规则于一体的综合规则。神经规则可以通过神经规则生成算法(NPA)从现有的经验数据中生成。在本文中,我们提出了(a)关于神经规则表示的NPA扩展,以便它们更自然和更有信息量,以及(b)我们可以在NPA的某些点上使用的各种替代策略的实验比较,目标是产生尽可能少的神经规则。(b)的结果显示,与计算成本相比,在神经规则数量的增加方面,没有明确的赢家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信