Hybrid Particle Swarm Optimization scheduling for cloud computing

M. Sridhar, G. M. Babu
{"title":"Hybrid Particle Swarm Optimization scheduling for cloud computing","authors":"M. Sridhar, G. M. Babu","doi":"10.1109/IADCC.2015.7154892","DOIUrl":null,"url":null,"abstract":"Cloud computing is revolutionizing on how information technology is used by organizations and individuals. Cloud computing provides dynamic services with virtualized resources over the Internet. It ensures facilities to develop, deploy, and manage applications `on the cloud' for end users entailing resources virtualization that maintains and manages itself. Scheduling is a task performed to get maximum profit to increase cloud computing work load efficiency. Its objective is using resources properly and managing load between resources with minimum execution time. High communication cost incurs in clouds prevent task schedulers from being applied in a large scale distributed environment. This study proposes a hybrid Particle Swarm Optimization (PSO) which performs better in execution ratio and average schedule length.","PeriodicalId":123908,"journal":{"name":"2015 IEEE International Advance Computing Conference (IACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2015.7154892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Cloud computing is revolutionizing on how information technology is used by organizations and individuals. Cloud computing provides dynamic services with virtualized resources over the Internet. It ensures facilities to develop, deploy, and manage applications `on the cloud' for end users entailing resources virtualization that maintains and manages itself. Scheduling is a task performed to get maximum profit to increase cloud computing work load efficiency. Its objective is using resources properly and managing load between resources with minimum execution time. High communication cost incurs in clouds prevent task schedulers from being applied in a large scale distributed environment. This study proposes a hybrid Particle Swarm Optimization (PSO) which performs better in execution ratio and average schedule length.
云计算混合粒子群优化调度
云计算正在彻底改变组织和个人使用信息技术的方式。云计算通过互联网提供虚拟化资源的动态服务。它确保了为最终用户开发、部署和管理“在云上”的应用程序的设施,这些应用程序需要资源虚拟化来维护和管理自身。调度是为了获得最大利润而执行的任务,以提高云计算的工作负载效率。它的目标是以最小的执行时间正确地使用资源和管理资源之间的负载。云环境中高昂的通信成本阻碍了任务调度器在大规模分布式环境中的应用。本文提出了一种混合粒子群优化算法,该算法在执行率和平均调度长度方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信