UltraSE: single-channel speech enhancement using ultrasound

Ke Sun, Xinyu Zhang
{"title":"UltraSE: single-channel speech enhancement using ultrasound","authors":"Ke Sun, Xinyu Zhang","doi":"10.1145/3447993.3448626","DOIUrl":null,"url":null,"abstract":"Robust speech enhancement is considered as the holy grail of audio processing and a key requirement for human-human and human-machine interaction. Solving this task with single-channel, audio-only methods remains an open challenge, especially for practical scenarios involving a mixture of competing speakers and background noise. In this paper, we propose UltraSE, which uses ultrasound sensing as a complementary modality to separate the desired speaker's voice from interferences and noise. UltraSE uses a commodity mobile device (e.g., smartphone) to emit ultrasound and capture the reflections from the speaker's articulatory gestures. It introduces a multi-modal, multi-domain deep learning framework to fuse the ultrasonic Doppler features and the audible speech spectrogram. Furthermore, it employs an adversarially trained discriminator, based on a cross-modal similarity measurement network, to learn the correlation between the two heterogeneous feature modalities. Our experiments verify that UltraSE simultaneously improves speech intelligibility and quality, and outperforms state-of-the-art solutions by a large margin.","PeriodicalId":177431,"journal":{"name":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447993.3448626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Robust speech enhancement is considered as the holy grail of audio processing and a key requirement for human-human and human-machine interaction. Solving this task with single-channel, audio-only methods remains an open challenge, especially for practical scenarios involving a mixture of competing speakers and background noise. In this paper, we propose UltraSE, which uses ultrasound sensing as a complementary modality to separate the desired speaker's voice from interferences and noise. UltraSE uses a commodity mobile device (e.g., smartphone) to emit ultrasound and capture the reflections from the speaker's articulatory gestures. It introduces a multi-modal, multi-domain deep learning framework to fuse the ultrasonic Doppler features and the audible speech spectrogram. Furthermore, it employs an adversarially trained discriminator, based on a cross-modal similarity measurement network, to learn the correlation between the two heterogeneous feature modalities. Our experiments verify that UltraSE simultaneously improves speech intelligibility and quality, and outperforms state-of-the-art solutions by a large margin.
UltraSE:利用超声波进行单通道语音增强
鲁棒语音增强被认为是音频处理的圣杯,也是实现人机交互的关键要求。用单通道、纯音频的方法解决这个问题仍然是一个开放的挑战,特别是在涉及竞争扬声器和背景噪声混合的实际场景中。在本文中,我们提出了UltraSE,它使用超声波传感作为一种补充方式,将所需说话者的声音从干扰和噪声中分离出来。UltraSE使用一种普通的移动设备(例如智能手机)来发射超声波,并捕捉说话者发音手势的反射。引入多模态、多域深度学习框架,融合超声多普勒特征和可听语音谱图。此外,它采用基于跨模态相似性测量网络的对抗性训练判别器来学习两个异构特征模态之间的相关性。我们的实验验证了UltraSE同时提高了语音清晰度和质量,并且大大优于最先进的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信