Twin signed total domination numbers in directed graphs

M. Atapour, A. Bodaghli, S. M. Sheikholeslami
{"title":"Twin signed total domination numbers in directed graphs","authors":"M. Atapour, A. Bodaghli, S. M. Sheikholeslami","doi":"10.5556/J.TKJM.47.2016.2035","DOIUrl":null,"url":null,"abstract":"Let $D$ be a finite simple digraph with vertex set $V(D)$ and arc set $A(D)$. A twin signed Roman dominating function (TSRDF) on the digraph $D$ is a function $f:V(D)\\rightarrow\\{-1,1,2\\}$ satisfying the conditions that (i) $\\sum_{x\\in N^-[v]}f(x)\\ge 1$ and $\\sum_{x\\in N^+[v]}f(x)\\ge 1$ for each $v\\in V(D)$, where $N^-[v]$ (resp. $N^+[v]$) consists of $v$ and all in-neighbors (resp. out-neighbors) of $v$, and (ii) every vertex $u$ for which $f(u)=-1$ has an in-neighbor $v$ and an out-neighbor $w$ for which $f(v)=f(w)=2$. The weight of an TSRDF $f$ is $\\omega(f)=\\sum_{v\\in V(D)}f(v)$. The twin signed Roman domination number $\\gamma_{sR}^*(D)$ of $D$ is the minimum weight of an TSRDF on $D$. In this paper, we initiate the study of twin signed Roman domination in digraphs and we present some sharp bounds on $\\gamma_{sR}^*(D)$. In addition, we determine the twin signed Roman domination number of some classes of digraphs.","PeriodicalId":378960,"journal":{"name":"Ars Comb.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Comb.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.47.2016.2035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arc set $A(D)$. A twin signed Roman dominating function (TSRDF) on the digraph $D$ is a function $f:V(D)\rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x\in N^-[v]}f(x)\ge 1$ and $\sum_{x\in N^+[v]}f(x)\ge 1$ for each $v\in V(D)$, where $N^-[v]$ (resp. $N^+[v]$) consists of $v$ and all in-neighbors (resp. out-neighbors) of $v$, and (ii) every vertex $u$ for which $f(u)=-1$ has an in-neighbor $v$ and an out-neighbor $w$ for which $f(v)=f(w)=2$. The weight of an TSRDF $f$ is $\omega(f)=\sum_{v\in V(D)}f(v)$. The twin signed Roman domination number $\gamma_{sR}^*(D)$ of $D$ is the minimum weight of an TSRDF on $D$. In this paper, we initiate the study of twin signed Roman domination in digraphs and we present some sharp bounds on $\gamma_{sR}^*(D)$. In addition, we determine the twin signed Roman domination number of some classes of digraphs.
有向图中的双签名总支配数
让 $D$ 是一个具有顶点集的有限简单有向图 $V(D)$ 弧线设置 $A(D)$. 有向图上的双符号罗马支配函数(TSRDF $D$ 是一个函数 $f:V(D)\rightarrow\{-1,1,2\}$ 满足(i)的条件 $\sum_{x\in N^-[v]}f(x)\ge 1$ 和 $\sum_{x\in N^+[v]}f(x)\ge 1$ 对于每一个 $v\in V(D)$,其中 $N^-[v]$ (回答) $N^+[v]$)包括 $v$ 所有的邻居(请注意)。外邻居 $v$(ii)每个顶点 $u$ 为了什么? $f(u)=-1$ 有一个内邻居 $v$ 还有一个邻居 $w$ 为了什么? $f(v)=f(w)=2$. TSRDF的权重 $f$ 是 $\omega(f)=\sum_{v\in V(D)}f(v)$. 双胞胎签了罗马统治号 $\gamma_{sR}^*(D)$ 的 $D$ TSRDF的最小重量是多少 $D$. 本文研究了有向图上的双符号罗马支配,并给出了有向图上的一些明显的界 $\gamma_{sR}^*(D)$. 此外,我们还确定了几类有向图的双签名罗马支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信