Complete System for Text Line Extraction Using Convolutional Neural Networks and Watershed Transform

Joan Pastor-Pellicer, Muhammad Zeshan Afzal, M. Liwicki, María José Castro Bleda
{"title":"Complete System for Text Line Extraction Using Convolutional Neural Networks and Watershed Transform","authors":"Joan Pastor-Pellicer, Muhammad Zeshan Afzal, M. Liwicki, María José Castro Bleda","doi":"10.1109/DAS.2016.58","DOIUrl":null,"url":null,"abstract":"We present a novel Convolutional Neural Network based method for the extraction of text lines, which consists of an initial Layout Analysis followed by the estimation of the Main Body Area (i.e., the text area between the baseline and the corpus line) for each text line. Finally, a region-based method using watershed transform is performed on the map of the Main Body Area for extracting the resulting lines. We have evaluated the new system on the IAM-HisDB, a publicly available dataset containing historical documents, outperforming existing learning-based text line extraction methods, which consider the problem as pixel labelling problem into text and non-text regions.","PeriodicalId":197359,"journal":{"name":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2016.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We present a novel Convolutional Neural Network based method for the extraction of text lines, which consists of an initial Layout Analysis followed by the estimation of the Main Body Area (i.e., the text area between the baseline and the corpus line) for each text line. Finally, a region-based method using watershed transform is performed on the map of the Main Body Area for extracting the resulting lines. We have evaluated the new system on the IAM-HisDB, a publicly available dataset containing historical documents, outperforming existing learning-based text line extraction methods, which consider the problem as pixel labelling problem into text and non-text regions.
基于卷积神经网络和分水岭变换的文本行提取系统
我们提出了一种新颖的基于卷积神经网络的文本行提取方法,该方法包括初始布局分析,然后估计每个文本行的主体区域(即基线和语料库行之间的文本区域)。最后,对主体区域的地图进行基于区域的分水岭变换提取结果线。我们在IAM-HisDB(一个包含历史文档的公开可用数据集)上评估了新系统,优于现有的基于学习的文本行提取方法,这些方法将问题视为文本和非文本区域的像素标记问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信