Bathiya Senevirathna, Sheung Lu, E. Smela, P. Abshire
{"title":"An Imaging Platform for Real-Time In Vitro Microscopic Imaging for Lab-on-CMOS Systems","authors":"Bathiya Senevirathna, Sheung Lu, E. Smela, P. Abshire","doi":"10.1109/BIOCAS.2019.8919023","DOIUrl":null,"url":null,"abstract":"CMOS-based microelectronic sensors have great potential in the development of biosensors for medical and life science applications. Validating these lab-on-CMOS systems is a challenging task due to the difficulties in obtaining simultaneous ground-truth imaging and sensor data. In this work, we report a real-time imaging platform that generates high-quality images of lab-on-CMOS systems within cell culture environments. The platform was used to validate a CMOS capacitance sensor that monitors cell viability, proliferation, and death. In vitro experiments were performed with human ovarian cancer cell lines, in which time-lapse images and capacitance recordings were acquired simultaneously over three days. The images corroborate the temporal changes in capacitance recordings as the cells proliferate, and unambiguously confirm the sensor’s ability to detect single-cell binding events, track cell morphology changes, identify cell division events, and monitor cell motility.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8919023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
CMOS-based microelectronic sensors have great potential in the development of biosensors for medical and life science applications. Validating these lab-on-CMOS systems is a challenging task due to the difficulties in obtaining simultaneous ground-truth imaging and sensor data. In this work, we report a real-time imaging platform that generates high-quality images of lab-on-CMOS systems within cell culture environments. The platform was used to validate a CMOS capacitance sensor that monitors cell viability, proliferation, and death. In vitro experiments were performed with human ovarian cancer cell lines, in which time-lapse images and capacitance recordings were acquired simultaneously over three days. The images corroborate the temporal changes in capacitance recordings as the cells proliferate, and unambiguously confirm the sensor’s ability to detect single-cell binding events, track cell morphology changes, identify cell division events, and monitor cell motility.