Blow-Up of solution for G-L type equation in population problem

Ning Chen, Baodan Tian, Jian-Qian Chen
{"title":"Blow-Up of solution for G-L type equation in population problem","authors":"Ning Chen, Baodan Tian, Jian-Qian Chen","doi":"10.1109/ICACIA.2009.5361145","DOIUrl":null,"url":null,"abstract":"In this paper, on foundation of [1–4], to study population problem with extension Ginzbur—Landau type for (1) (3) and more general higher order nonlinear parabolic equation with initial bounded value problem which expresses it in existence, unique for classical solution, and by some method, to study this generalized solution and Blow-up phenomena. We obtain some new results, by means of method in [4] to prove the local degenerative problem with homogeneous Dirichlet's boundary value that on suite condition the solution is symmetry function for radius, then the rate of Blow-Up are same when the solution is Blow-Up in finite time, and consider Blow-Up set.","PeriodicalId":423210,"journal":{"name":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACIA.2009.5361145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, on foundation of [1–4], to study population problem with extension Ginzbur—Landau type for (1) (3) and more general higher order nonlinear parabolic equation with initial bounded value problem which expresses it in existence, unique for classical solution, and by some method, to study this generalized solution and Blow-up phenomena. We obtain some new results, by means of method in [4] to prove the local degenerative problem with homogeneous Dirichlet's boundary value that on suite condition the solution is symmetry function for radius, then the rate of Blow-Up are same when the solution is Blow-Up in finite time, and consider Blow-Up set.
人口问题中G-L型方程解的放大
本文在文献[1 - 4]的基础上,研究了(1)(3)一类具有可拓ginzber - landau型的种群问题和更一般的高阶非线性抛物型方程的初始有界值问题,该问题的存在性和经典解的唯一性,并通过某种方法研究了该问题的广义解和Blow-up现象。利用文献[4]中的方法,证明了具有齐次Dirichlet边值的局部退化问题在集合条件下解是半径的对称函数,那么在有限时间内解为Blow-Up时的Blow-Up率相同,并考虑Blow-Up集,得到了一些新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信