Fully unsupervised clustering in nonlinearly separable data using intelligent Kernel K-Means

Teny Handhayani, Ito Wasito
{"title":"Fully unsupervised clustering in nonlinearly separable data using intelligent Kernel K-Means","authors":"Teny Handhayani, Ito Wasito","doi":"10.1109/ICACSIS.2014.7065891","DOIUrl":null,"url":null,"abstract":"Intelligent Kernel K-Means is a fully unsupervised clustering technique. This technique is developed by combining Intelligent K-Means and Kernel K-Means. Intelligent Kernel K-Means used to cluster kernel matrix without any information about the number of clusters. The goal of this research is to evaluate the performance of Intelligent Kernel K-Means for clustering nonlinearly separable data. Various artificial nonlinearly separable data are used in this experiment. The best result is the clustering often ring datasets. It produces Adjusted Rand Index (ARI) = 1.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intelligent Kernel K-Means is a fully unsupervised clustering technique. This technique is developed by combining Intelligent K-Means and Kernel K-Means. Intelligent Kernel K-Means used to cluster kernel matrix without any information about the number of clusters. The goal of this research is to evaluate the performance of Intelligent Kernel K-Means for clustering nonlinearly separable data. Various artificial nonlinearly separable data are used in this experiment. The best result is the clustering often ring datasets. It produces Adjusted Rand Index (ARI) = 1.
基于智能核k均值的非线性可分数据的完全无监督聚类
智能核K-Means是一种完全无监督聚类技术。该技术将智能K-Means与核K-Means相结合。智能核K-Means用于对核矩阵进行聚类,不需要任何关于聚类数量的信息。本研究的目的是评估智能核k -均值对非线性可分数据聚类的性能。实验中使用了各种人为的非线性可分数据。最好的结果是聚类经常环数据集。它产生调整后的兰特指数(ARI) = 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信